Penetrant PKCb mutation in ATLL displays a mixed gain-of-function.

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sophie J L Brown,David C Briggs,Patrick Costello,Hiroko Yaguchi,Charles R M Bangham,Peter J Parker,Neil Q McDonald
{"title":"Penetrant PKCb mutation in ATLL displays a mixed gain-of-function.","authors":"Sophie J L Brown,David C Briggs,Patrick Costello,Hiroko Yaguchi,Charles R M Bangham,Peter J Parker,Neil Q McDonald","doi":"10.1042/bcj20253384","DOIUrl":null,"url":null,"abstract":"Mutations in the T-cell receptor signalling pathway have been identified in patients with adult T-cell leukaemia/lymphoma (ATLL) and one of the most frequently observed targets of these mutations is protein kinase C beta (PKCb). Here we have characterised the most frequent mutation in PKCb (D427N) addressing the issue of gain/loss of function, neomorphic change, assessing the impact of mutation in vivo, in cells, biochemically and structurally. It is concluded that this mutation is a gain-of-function, activating mutation that confers an altered substrate specificity on this protein kinase. In a constitutive knock-in mouse model this activated allele induces splenomegaly associated with extramedullary haematopoiesis. Pharmacologically, the D427N mutant protein displays poor sensitivity to established PKCb inhibitors, necessitating development of bespoke therapeutics for any ATLL intervention through this target. Such efforts could be guided by the availability the D427N mutant-ruboxistaurin structure presented here.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20253384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations in the T-cell receptor signalling pathway have been identified in patients with adult T-cell leukaemia/lymphoma (ATLL) and one of the most frequently observed targets of these mutations is protein kinase C beta (PKCb). Here we have characterised the most frequent mutation in PKCb (D427N) addressing the issue of gain/loss of function, neomorphic change, assessing the impact of mutation in vivo, in cells, biochemically and structurally. It is concluded that this mutation is a gain-of-function, activating mutation that confers an altered substrate specificity on this protein kinase. In a constitutive knock-in mouse model this activated allele induces splenomegaly associated with extramedullary haematopoiesis. Pharmacologically, the D427N mutant protein displays poor sensitivity to established PKCb inhibitors, necessitating development of bespoke therapeutics for any ATLL intervention through this target. Such efforts could be guided by the availability the D427N mutant-ruboxistaurin structure presented here.
ATLL的显性PKCb突变表现为混合功能增益。
在成人t细胞白血病/淋巴瘤(ATLL)患者中发现了t细胞受体信号通路的突变,这些突变最常观察到的靶标之一是蛋白激酶C β (PKCb)。在这里,我们描述了PKCb中最常见的突变(D427N),解决了功能的获得/丧失、新形态改变的问题,评估了突变在体内、细胞、生化和结构中的影响。结论是,这种突变是一种功能获得,激活突变,赋予该蛋白激酶改变的底物特异性。在构建敲入小鼠模型中,这种激活的等位基因诱导与髓外造血相关的脾肿大。药理学上,D427N突变蛋白对已建立的PKCb抑制剂表现出较差的敏感性,因此需要针对任何通过该靶点的ATLL干预开发定制治疗方法。这些努力可以通过D427N突变型ruboxistaurin结构的可用性来指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信