A hybrid phase-synchronization framework for rotary motors: Discrete dynamics in ATP synthase and continuous dynamics in the bacterial flagellar motor

IF 1.9 4区 生物学 Q2 BIOLOGY
Carey Witkov
{"title":"A hybrid phase-synchronization framework for rotary motors: Discrete dynamics in ATP synthase and continuous dynamics in the bacterial flagellar motor","authors":"Carey Witkov","doi":"10.1016/j.biosystems.2025.105617","DOIUrl":null,"url":null,"abstract":"<div><div>ATP synthase functions as a dual-rotor molecular motor, with the F<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span> and F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> units stepping in mismatched increments, yet achieving near 100% chemomechanical efficiency of the F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> motor under near-reversible conditions. This raises the question of how stable phase synchronization is maintained despite such symmetry mismatch. We address this problem by modeling ATP synthase as a driven oscillator system in which the central elastic stalk acts as a torsional filter, transmitting and modulating torque. We propose a hybrid synchronization model that integrates continuous and discrete dynamics, governed by a torsional energy-dependent mixing parameter that determines interpolation between limits. The resulting single hybrid phase synchronization equation captures both gradual continuous phase drift and discrete pulsed entrainment. This framework reproduces key experimental features, including stable synchronization, intermittent slip events in ATP synthase, and recovery dynamics under varying loads, and offers testable predictions. In the discrete limit, the model specializes to a van Slooten-type pulse map that accords with the well-established 120° stepping of F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span>-ATPase; in the continuous limit, it reduces to an Adler-type equation appropriate for the near-constant-torque behavior of the bacterial flagellar motor. This framing unifies two historically separate descriptions without requiring a literal mode change within a single molecule and clarifies how elastic energy can interpolate between limits via the mixing parameter <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. The hybrid model proposes that ATP synthase and the bacterial flagellar motor exploit elastic filtering and energy-regulated regime interpolation between limits to achieve robust rotational coordination, providing new insights into the dynamics of biological rotary motors.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"258 ","pages":"Article 105617"},"PeriodicalIF":1.9000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725002278","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ATP synthase functions as a dual-rotor molecular motor, with the F0 and F1 units stepping in mismatched increments, yet achieving near 100% chemomechanical efficiency of the F1 motor under near-reversible conditions. This raises the question of how stable phase synchronization is maintained despite such symmetry mismatch. We address this problem by modeling ATP synthase as a driven oscillator system in which the central elastic stalk acts as a torsional filter, transmitting and modulating torque. We propose a hybrid synchronization model that integrates continuous and discrete dynamics, governed by a torsional energy-dependent mixing parameter that determines interpolation between limits. The resulting single hybrid phase synchronization equation captures both gradual continuous phase drift and discrete pulsed entrainment. This framework reproduces key experimental features, including stable synchronization, intermittent slip events in ATP synthase, and recovery dynamics under varying loads, and offers testable predictions. In the discrete limit, the model specializes to a van Slooten-type pulse map that accords with the well-established 120° stepping of F1-ATPase; in the continuous limit, it reduces to an Adler-type equation appropriate for the near-constant-torque behavior of the bacterial flagellar motor. This framing unifies two historically separate descriptions without requiring a literal mode change within a single molecule and clarifies how elastic energy can interpolate between limits via the mixing parameter σ(E). The hybrid model proposes that ATP synthase and the bacterial flagellar motor exploit elastic filtering and energy-regulated regime interpolation between limits to achieve robust rotational coordination, providing new insights into the dynamics of biological rotary motors.
旋转马达的混合相位同步框架:ATP合酶的离散动力学和细菌鞭毛马达的连续动力学。
ATP合酶的功能就像一个双转子分子马达,F0和F1亚基以不匹配的增量步进,但却能达到接近100%的效率。这就提出了一个问题,即在这种对称性不匹配的情况下,如何保持稳定的相位同步。我们通过将ATP合酶建模为驱动振荡器系统来解决这个问题,其中中心弹性杆充当扭转过滤器,传输和调制扭矩。我们提出了一个混合同步模型,它集成了连续和离散动力学,由一个依赖于扭转能量的混合参数控制,该参数决定了极限之间的插值。由此产生的单一混合相位同步方程既捕获渐进的连续相位漂移,又捕获离散脉冲夹带。该框架再现了关键的实验特征,包括稳定的同步、相滑移和不同负载下的恢复动态,并提供了可测试的预测。结果表明,ATP合酶利用弹性过滤和极限之间的能量调节状态插值来实现鲁棒旋转协调,为生物旋转马达的动力学提供了新的见解。在混合的离散极限下,该模型专为Van sloten型脉冲图,该脉冲图符合已建立的f1 - atp酶的120°步进;在连续极限下,它简化为适合于细菌鞭毛马达的近恒定扭矩行为的阿德勒型方程。这种框架统一了两种历史上分开的描述,而不需要在单个分子内进行字面模式变化,并阐明了弹性能如何通过混合参数σ(E)在极限之间插入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信