Hansol Im, Vipin Chembilikandy, Adonis D'Mello, Madison Pearson, Hervé Tettelin, Carlos J Orihuela
{"title":"Alterations in nutrient availability in the lungs during <i>Streptococcus pneumoniae</i>-induced pneumonia.","authors":"Hansol Im, Vipin Chembilikandy, Adonis D'Mello, Madison Pearson, Hervé Tettelin, Carlos J Orihuela","doi":"10.1128/iai.00380-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus pneumoniae</i> is a leading cause of pneumonia. Importantly, the extent and impact of changes in the infected airway on bacterial nutrient availability and gene expression are not known. Utilizing untargeted UPLC-ESI-MS/MS metabolomics, we comprehensively characterized the metabolic landscape in the airway across early, mid, and severe stages of pneumococcal pneumonia. This revealed that dynamic shifts in metabolites occurred during pneumonia, with an initial influx of metabolites at the early stage, followed by declines as the disease progressed. Specific host metabolic perturbations were indicative of purine dysregulation, cellular stress, and outright tissue injury. Levels of glucose, a known modulator of pneumococcal capsule production, were highest at the early disease stage and then declined as the disease progressed, overlaying general metabolite trends. Concurrent bacterial transcriptome profiling was performed using a NanoString nCounter custom panel of 66 genes selected for their importance to metabolism, virulence, and stress response; 9% of which had disease-stage significant differences in gene expression. This analysis revealed remarkably high expression of <i>spxB</i>, the gene encoding pyruvate oxidase, at the severe stage of pneumonia compared to the mid-stage pneumonia, consistent with a drop in glucose levels and indicative of a shift toward mixed fermentation and the increased production of hydrogen peroxide. Our study improves our understanding of how pneumococcal infection alters the lung environment, driving profound metabolic shifts that, in turn, influence bacterial phenotypes. This detailed understanding of host-pathogen metabolic interactions offers valuable insights into novel therapeutic strategies.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0038025"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00380-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia. Importantly, the extent and impact of changes in the infected airway on bacterial nutrient availability and gene expression are not known. Utilizing untargeted UPLC-ESI-MS/MS metabolomics, we comprehensively characterized the metabolic landscape in the airway across early, mid, and severe stages of pneumococcal pneumonia. This revealed that dynamic shifts in metabolites occurred during pneumonia, with an initial influx of metabolites at the early stage, followed by declines as the disease progressed. Specific host metabolic perturbations were indicative of purine dysregulation, cellular stress, and outright tissue injury. Levels of glucose, a known modulator of pneumococcal capsule production, were highest at the early disease stage and then declined as the disease progressed, overlaying general metabolite trends. Concurrent bacterial transcriptome profiling was performed using a NanoString nCounter custom panel of 66 genes selected for their importance to metabolism, virulence, and stress response; 9% of which had disease-stage significant differences in gene expression. This analysis revealed remarkably high expression of spxB, the gene encoding pyruvate oxidase, at the severe stage of pneumonia compared to the mid-stage pneumonia, consistent with a drop in glucose levels and indicative of a shift toward mixed fermentation and the increased production of hydrogen peroxide. Our study improves our understanding of how pneumococcal infection alters the lung environment, driving profound metabolic shifts that, in turn, influence bacterial phenotypes. This detailed understanding of host-pathogen metabolic interactions offers valuable insights into novel therapeutic strategies.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.