Ultrafast Photodetectors for Secure Communication, Logic Processing, and Machine Learning-Assisted Optical Material Classification

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohit Kumar, Hyungtak Seo
{"title":"Ultrafast Photodetectors for Secure Communication, Logic Processing, and Machine Learning-Assisted Optical Material Classification","authors":"Mohit Kumar,&nbsp;Hyungtak Seo","doi":"10.1002/adom.202501088","DOIUrl":null,"url":null,"abstract":"<p>Despite significant advancements in high-speed photodetection, existing ultrafast photodetectors remain constrained by fundamental limitations in responsivity, dynamic range, and signal integrity, particularly for applications requiring secure communication and adaptive processing. An ultrafast photodetector that captures optical transients on nanosecond timescales, far surpassing the ≈µs speed limitations of conventional photosensors is presented. Achieving a 61 ns response time (33 ns halfwidth) via a coplanar Schottky-capacitive design, this device leverages instantaneous photo-induced capacitance modulation to generate transient current spikes, effectively bypassing RC time-constant limitations. The resulting transient detection mode offers a large linear dynamic range (&gt;93 dB) and a 6000% enhanced sensitivity compared to conventional steady-state photocurrent operation. This ultrafast speed and sensitivity are harnessed for secure high-speed data transmission and logic processing via an electro-optical modulation scheme that ensures reliable, tamper-resistant information encoding. Furthermore, the photodetector's nonlinear, bias-tunable photoresponse captures distinct material-dependent optical signatures, allowing machine learning classification of metals, insulators, and semiconductors with over 82% accuracy. By integrating ultrafast optical detection with secure communication and logic processing capabilities, this photodetector platform represents a transformative solution for next-generation robotics, automation, intelligent sensing, and high-security materials characterization.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 29","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advancements in high-speed photodetection, existing ultrafast photodetectors remain constrained by fundamental limitations in responsivity, dynamic range, and signal integrity, particularly for applications requiring secure communication and adaptive processing. An ultrafast photodetector that captures optical transients on nanosecond timescales, far surpassing the ≈µs speed limitations of conventional photosensors is presented. Achieving a 61 ns response time (33 ns halfwidth) via a coplanar Schottky-capacitive design, this device leverages instantaneous photo-induced capacitance modulation to generate transient current spikes, effectively bypassing RC time-constant limitations. The resulting transient detection mode offers a large linear dynamic range (>93 dB) and a 6000% enhanced sensitivity compared to conventional steady-state photocurrent operation. This ultrafast speed and sensitivity are harnessed for secure high-speed data transmission and logic processing via an electro-optical modulation scheme that ensures reliable, tamper-resistant information encoding. Furthermore, the photodetector's nonlinear, bias-tunable photoresponse captures distinct material-dependent optical signatures, allowing machine learning classification of metals, insulators, and semiconductors with over 82% accuracy. By integrating ultrafast optical detection with secure communication and logic processing capabilities, this photodetector platform represents a transformative solution for next-generation robotics, automation, intelligent sensing, and high-security materials characterization.

Abstract Image

用于安全通信、逻辑处理和机器学习辅助光学材料分类的超快光电探测器
尽管在高速光电探测方面取得了重大进展,但现有的超快光电探测器在响应性、动态范围和信号完整性方面仍然受到基本限制,特别是在需要安全通信和自适应处理的应用中。提出了一种超快光电探测器,可在纳秒级时间尺度上捕获光学瞬态,远远超过传统光电传感器的≈µs速度限制。通过共面肖特基电容设计实现61 ns响应时间(33 ns半宽),该器件利用瞬时光致电容调制产生瞬态电流尖峰,有效地绕过RC时间常数限制。由此产生的瞬态检测模式提供了大的线性动态范围(>93 dB),与传统的稳态光电流操作相比,灵敏度提高了6000%。这种超快的速度和灵敏度被利用于安全的高速数据传输和逻辑处理,通过电光调制方案,确保可靠,防篡改的信息编码。此外,光电探测器的非线性、偏置可调光响应捕获不同的材料相关光学特征,允许机器学习对金属、绝缘体和半导体进行分类,准确率超过82%。通过将超快光学检测与安全通信和逻辑处理能力相结合,该光电探测器平台代表了下一代机器人、自动化、智能传感和高安全性材料表征的变革性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信