Manipulating Energy Transfer in Multilayer Lanthanide-Based Nanoparticles for Enhanced NIR-II Luminescence and Lifetime Tuning

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Linxuan Zhang, Quanjie Lv, Jing Chu, Yijun Han, Ruihao Yang, Zeinab Marfavi, Gengxin Zhang, Yongjie Wu, Kang Sun, Ke Tao
{"title":"Manipulating Energy Transfer in Multilayer Lanthanide-Based Nanoparticles for Enhanced NIR-II Luminescence and Lifetime Tuning","authors":"Linxuan Zhang,&nbsp;Quanjie Lv,&nbsp;Jing Chu,&nbsp;Yijun Han,&nbsp;Ruihao Yang,&nbsp;Zeinab Marfavi,&nbsp;Gengxin Zhang,&nbsp;Yongjie Wu,&nbsp;Kang Sun,&nbsp;Ke Tao","doi":"10.1002/adom.202501267","DOIUrl":null,"url":null,"abstract":"<p>Lanthanide-based multilayer nanoparticles exhibiting near-infrared II (NIR-II, 1,000–1,700 nm) emissions have garnered significant interest for diverse frontier optical applications. However, precisely manipulating emissions simultaneously in intensity and lifetime remains challenging. This study proposes a conceptual model of tuning interfacial energy transfer (IET) in a core–shell–shell nanostructure to spatiotemporally control Er<sup>3+</sup> downconversion luminescence and lifetime. Nanoscale manipulation of the interfacial interactions between Er and Yb sublattices enhances downconversion. Additionally, increasing the thickness of Yb<sup>3+</sup> interlayer effectively modulates the Nd-Yb-Er energy transfer pathway, simultaneously 8.2-fold of suppressing emission intensity and 1.8-fold prolonging luminescence lifetime. This strategy enables multifunctional tuning of optical properties through combined steady-state excitation and time-gated detection, offering new opportunities for photonic applications such as high-security optical anti-counterfeiting.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 29","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501267","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanide-based multilayer nanoparticles exhibiting near-infrared II (NIR-II, 1,000–1,700 nm) emissions have garnered significant interest for diverse frontier optical applications. However, precisely manipulating emissions simultaneously in intensity and lifetime remains challenging. This study proposes a conceptual model of tuning interfacial energy transfer (IET) in a core–shell–shell nanostructure to spatiotemporally control Er3+ downconversion luminescence and lifetime. Nanoscale manipulation of the interfacial interactions between Er and Yb sublattices enhances downconversion. Additionally, increasing the thickness of Yb3+ interlayer effectively modulates the Nd-Yb-Er energy transfer pathway, simultaneously 8.2-fold of suppressing emission intensity and 1.8-fold prolonging luminescence lifetime. This strategy enables multifunctional tuning of optical properties through combined steady-state excitation and time-gated detection, offering new opportunities for photonic applications such as high-security optical anti-counterfeiting.

Abstract Image

操纵多层镧系纳米颗粒的能量转移以增强NIR-II发光和寿命调谐
镧系多层纳米粒子表现出近红外II (NIR-II, 1,000-1,700 nm)的发射,在各种前沿光学应用中引起了极大的兴趣。然而,精确地同时控制排放强度和寿命仍然具有挑战性。本研究提出了一个核-壳-壳纳米结构中调节界面能量传递(IET)的概念模型,从而在时空上控制Er3+的下转换发光和寿命。在纳米尺度上操纵Er和Yb亚晶格之间的界面相互作用增强了下转换。此外,增加Yb3+层厚度可以有效调节Nd-Yb-Er的能量传递途径,同时抑制发射强度8.2倍,延长发光寿命1.8倍。该策略通过结合稳态激励和时间门控检测实现了光学特性的多功能调谐,为高安全性光学防伪等光子应用提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信