{"title":"Turning cold tumors into hot tumors to ignite immunotherapy","authors":"Yuan-Tong Liu, Yun-Long Wang, Shuo Wang, Jia-Jun Li, Wei He, Xin-Juan Fan, Xiang-Bo Wan","doi":"10.1186/s12943-025-02477-6","DOIUrl":null,"url":null,"abstract":"The revolution in cancer immunotherapy, particularly through immune checkpoint inhibitors (ICIs), underscores the significant role of the tumor microenvironment (TME) in determining therapeutic outcomes. At the heart of this is the classification of tumors into “cold” and “hot”, which significantly influences the efficacy of immunotherapy. “Cold” tumors are characterized by scant immune cell infiltration and an immunosuppressive TME, which effectively evades immune detection and resists ICIs. In contrast, “hot” tumors, characterized by abundant immune cells and a proinflammatory environment, are more receptive to immunotherapeutic approaches. This review comprehensively examines the molecular and cellular foundations of the “cold” tumor phenotype, delving into the mechanisms of camouflage (impeding immune priming and infiltration), coercion (suppressing immune functions), and cytoprotection (resisting inflammatory death) that contribute to maintaining immune silence. Furthermore, it critically evaluates emerging strategies for converting “cold” tumors to “hot”, immune-reactive entities, including the role of biomaterials in remodeling the TME to increase the effectiveness of immunotherapy. Through an in-depth exploration of these foundational mechanisms and therapeutic advancements, this review seeks to shed light on the way forward in cancer treatment, framing the transformation of “cold” tumors to “hot” tumors as a crucial approach to enhancing the reach of immunotherapy to a broader array of cancer types.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"7 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02477-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The revolution in cancer immunotherapy, particularly through immune checkpoint inhibitors (ICIs), underscores the significant role of the tumor microenvironment (TME) in determining therapeutic outcomes. At the heart of this is the classification of tumors into “cold” and “hot”, which significantly influences the efficacy of immunotherapy. “Cold” tumors are characterized by scant immune cell infiltration and an immunosuppressive TME, which effectively evades immune detection and resists ICIs. In contrast, “hot” tumors, characterized by abundant immune cells and a proinflammatory environment, are more receptive to immunotherapeutic approaches. This review comprehensively examines the molecular and cellular foundations of the “cold” tumor phenotype, delving into the mechanisms of camouflage (impeding immune priming and infiltration), coercion (suppressing immune functions), and cytoprotection (resisting inflammatory death) that contribute to maintaining immune silence. Furthermore, it critically evaluates emerging strategies for converting “cold” tumors to “hot”, immune-reactive entities, including the role of biomaterials in remodeling the TME to increase the effectiveness of immunotherapy. Through an in-depth exploration of these foundational mechanisms and therapeutic advancements, this review seeks to shed light on the way forward in cancer treatment, framing the transformation of “cold” tumors to “hot” tumors as a crucial approach to enhancing the reach of immunotherapy to a broader array of cancer types.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.