Thyroid hormone receptor beta signaling is a targetable driver of prostate cancer growth

IF 33.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aleksandra Fesiuk, Daniel Pölöske, Elvin D. de Araujo, Geordon A. Frere, Timothy B. Wright, Gary Tin, Yasir S. Raouf, Olasunkanmi O. Olaoye, Ji Sung Park, Nicolas Blavet, Boris Tichý, Michaela Schlederer, Sandra Högler, Michael Wolf, Cécile Philippe, Osman Aksoy, Adam Varady, Alejandro Medaglia Mata, Maxim Varenicja, Boglárka Szabó, Theresa Weiss, Gabriel Wasinger, Torben Redmer, Heidi A. Neubauer, Martin Susani, Clemens P. Spielvogel, Jing Ning, Maik Dahlhoff, Martin Schepelmann, Richard Kennedy, Richard Moriggl, Geoffrey Brown, Jenny Persson, Christopher Gerner, Vojtech Bystry, Oldamur Hollóczki, David M. Heery, Patrick T. Gunning, Olaf Merkel, Brigitte Hantusch#, Lukas Kenner
{"title":"Thyroid hormone receptor beta signaling is a targetable driver of prostate cancer growth","authors":"Aleksandra Fesiuk, Daniel Pölöske, Elvin D. de Araujo, Geordon A. Frere, Timothy B. Wright, Gary Tin, Yasir S. Raouf, Olasunkanmi O. Olaoye, Ji Sung Park, Nicolas Blavet, Boris Tichý, Michaela Schlederer, Sandra Högler, Michael Wolf, Cécile Philippe, Osman Aksoy, Adam Varady, Alejandro Medaglia Mata, Maxim Varenicja, Boglárka Szabó, Theresa Weiss, Gabriel Wasinger, Torben Redmer, Heidi A. Neubauer, Martin Susani, Clemens P. Spielvogel, Jing Ning, Maik Dahlhoff, Martin Schepelmann, Richard Kennedy, Richard Moriggl, Geoffrey Brown, Jenny Persson, Christopher Gerner, Vojtech Bystry, Oldamur Hollóczki, David M. Heery, Patrick T. Gunning, Olaf Merkel, Brigitte Hantusch#, Lukas Kenner","doi":"10.1186/s12943-025-02451-2","DOIUrl":null,"url":null,"abstract":"Thyroid hormone (TH) signaling plays a major role in the development, energy homeostasis, and metabolism of most tissues. Recent studies have identified THs as drivers of prostate cancer (PCa) development and progression. We reported that the T3-scavenger protein µ-crystallin (CRYM) regulates the development and progression of PCa and that this involved crosstalk with androgen receptor (AR) signaling. However, the mechanisms remain incompletely understood. Here, we explored the role of thyroid hormone receptor β (TRβ), which is the main effector of TH signaling, in the context of PCa. The use of the TRβ-selective antagonist NH-3 inhibited PCa cell proliferation in vitro and reduced tumor size in PCa xenograft models in vivo. Notably, NH-3 was highly effective in the engrafted 22Rv1 cell line, a model for castration-resistant PCa (CRPC). Mechanistic studies revealed that NH-3 downregulates AR and the AR target genes Nkx3.1 and KLK3 (PSA). NH-3 was a more effective anticancer agent than enzalutamide, and their combined use was synergistic. Evidence from human datasets corroborates our findings, whereby elevated TRβ expression and mutations in the TH signaling pathway are associated with the onset of PCa. Collectively, these results establish TRβ as a mediator of tumorigenesis in PCa and identify NH-3 as a promising therapeutic agent for targeting AR signaling, particularly in CRPC. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"27 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02451-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid hormone (TH) signaling plays a major role in the development, energy homeostasis, and metabolism of most tissues. Recent studies have identified THs as drivers of prostate cancer (PCa) development and progression. We reported that the T3-scavenger protein µ-crystallin (CRYM) regulates the development and progression of PCa and that this involved crosstalk with androgen receptor (AR) signaling. However, the mechanisms remain incompletely understood. Here, we explored the role of thyroid hormone receptor β (TRβ), which is the main effector of TH signaling, in the context of PCa. The use of the TRβ-selective antagonist NH-3 inhibited PCa cell proliferation in vitro and reduced tumor size in PCa xenograft models in vivo. Notably, NH-3 was highly effective in the engrafted 22Rv1 cell line, a model for castration-resistant PCa (CRPC). Mechanistic studies revealed that NH-3 downregulates AR and the AR target genes Nkx3.1 and KLK3 (PSA). NH-3 was a more effective anticancer agent than enzalutamide, and their combined use was synergistic. Evidence from human datasets corroborates our findings, whereby elevated TRβ expression and mutations in the TH signaling pathway are associated with the onset of PCa. Collectively, these results establish TRβ as a mediator of tumorigenesis in PCa and identify NH-3 as a promising therapeutic agent for targeting AR signaling, particularly in CRPC.
甲状腺激素受体β信号是前列腺癌生长的可靶向驱动因子
甲状腺激素(TH)信号在大多数组织的发育、能量稳态和代谢中起着重要作用。最近的研究已经确定这是前列腺癌(PCa)发展和进展的驱动因素。我们报道了T3-scavenger proteinµ-crystallin (CRYM)调节PCa的发生和进展,并与雄激素受体(AR)信号传导进行串扰。然而,其机制仍不完全清楚。在此,我们探讨了甲状腺激素受体β (TRβ)在前列腺癌中的作用,这是甲状腺激素信号的主要效应物。使用trβ -选择性拮抗剂NH-3在体外抑制PCa细胞增殖,并在体内减少PCa异种移植模型的肿瘤大小。值得注意的是,NH-3在移植的22Rv1细胞系(一种抗去势PCa (CRPC)模型)中非常有效。机制研究表明,NH-3下调AR及AR靶基因Nkx3.1和KLK3 (PSA)。NH-3比恩杂鲁胺更有效,两者联合使用具有协同作用。来自人类数据集的证据证实了我们的发现,即TRβ表达升高和TH信号通路突变与PCa的发病有关。总的来说,这些结果证实了TRβ是前列腺癌肿瘤发生的中介,并确定了NH-3是靶向AR信号的有前途的治疗剂,特别是在CRPC中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信