From kinetic gases to an exponentially expanding universe — the Finsler-Friedmann equation

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Christian Pfeifer, Nicoleta Voicu, Annamária Friedl-Szász and Elena Popovici-Popescu
{"title":"From kinetic gases to an exponentially expanding universe — the Finsler-Friedmann equation","authors":"Christian Pfeifer, Nicoleta Voicu, Annamária Friedl-Szász and Elena Popovici-Popescu","doi":"10.1088/1475-7516/2025/10/050","DOIUrl":null,"url":null,"abstract":"We investigate the gravitational field of a kinetic gas beyond its standard derivation from the second moment of the one-particle distribution function (1PDF), which typically serves as the energy-momentum tensor in the Einstein equations. This standard procedure raises an important question: why do the other moments of the 1PDF (which are needed to fully characterize the kinematical properties of the gas) not contribute to the gravitational field? Moreover, could these moments be relevant in addressing the dark energy problem? Using the canonical coupling of the full 1PDF to Finsler spacetime geometry via the Finsler gravity equation, we show that in general all moments contribute non-trivially. We derive the Finsler gravity equation in homogeneous and isotropic symmetry in conformal time — dubbed the Finsler-Friedmann equation — which determines both the scale factor and the causal structure dynamically. Remarkably, this equation naturally admits a vacuum solution describing an exponentially expanding spacetime, without requiring a cosmological constant or any additional quantities. The resulting causal structure is a mild deformation of the one of Friedmann-Lemaître-Robertson-Walker (FLRW) geometry; close to the rest frame defined by cosmological time (i.e. for slowly moving objects), the causal structures of the two geometries are nearly indistinguishable.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"11 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/10/050","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the gravitational field of a kinetic gas beyond its standard derivation from the second moment of the one-particle distribution function (1PDF), which typically serves as the energy-momentum tensor in the Einstein equations. This standard procedure raises an important question: why do the other moments of the 1PDF (which are needed to fully characterize the kinematical properties of the gas) not contribute to the gravitational field? Moreover, could these moments be relevant in addressing the dark energy problem? Using the canonical coupling of the full 1PDF to Finsler spacetime geometry via the Finsler gravity equation, we show that in general all moments contribute non-trivially. We derive the Finsler gravity equation in homogeneous and isotropic symmetry in conformal time — dubbed the Finsler-Friedmann equation — which determines both the scale factor and the causal structure dynamically. Remarkably, this equation naturally admits a vacuum solution describing an exponentially expanding spacetime, without requiring a cosmological constant or any additional quantities. The resulting causal structure is a mild deformation of the one of Friedmann-Lemaître-Robertson-Walker (FLRW) geometry; close to the rest frame defined by cosmological time (i.e. for slowly moving objects), the causal structures of the two geometries are nearly indistinguishable.
从动能气体到指数膨胀的宇宙——芬斯勒-弗里德曼方程
我们从单粒子分布函数(1PDF)的第二矩(通常作为爱因斯坦方程中的能量-动量张量)的标准推导中研究了动力气体的引力场。这个标准程序提出了一个重要的问题:为什么1PDF的其他力矩(需要完全表征气体的运动学特性)没有对引力场做出贡献?此外,这些时刻是否与解决暗能量问题有关?通过芬斯勒引力方程,利用完整的1PDF与芬斯勒时空几何的正则耦合,我们证明了在一般情况下,所有的矩都是非平凡的贡献。我们导出了保形时间中齐次和各向同性对称的Finsler引力方程,称为Finsler- friedmann方程,它动态地决定了尺度因子和因果结构。值得注意的是,这个方程自然地允许一个真空解来描述一个指数膨胀的时空,而不需要宇宙常数或任何额外的量。由此产生的因果结构是friedman - lema - robert - walker (FLRW)几何结构的轻微变形;接近由宇宙学时间定义的静止框架(即对于缓慢运动的物体),这两种几何形状的因果结构几乎无法区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信