Air Sensor Data Unifier: R-Shiny Application.

Air Pub Date : 2025-09-01 Epub Date: 2025-08-30 DOI:10.3390/air3030021
Karoline K Barkjohn, Catherine Seppanen, Saravanan Arunachalam, Stephen Krabbe, Andrea L Clements
{"title":"Air Sensor Data Unifier: R-Shiny Application.","authors":"Karoline K Barkjohn, Catherine Seppanen, Saravanan Arunachalam, Stephen Krabbe, Andrea L Clements","doi":"10.3390/air3030021","DOIUrl":null,"url":null,"abstract":"<p><p>Data is needed to understand local air quality, reduce exposure, and mitigate the negative impacts on human health. Measuring local air quality often requires a hybrid monitoring approach consisting of the national air monitoring network and one or more networks of air sensors. However, it can be challenging to combine this data to produce a consistent picture of air quality, largely because sensor data is produced in a variety of formats. Users may have difficulty reformatting, performing basic quality control steps, and using the data for their intended purpose. We developed an R-Shiny application that allows users to import text-based air sensor data, describe the format, perform basic quality control, and export the data to standard formats through a user-friendly interface. Format information can be saved to speed up the processing of additional sensors of the same type. This tool can be used by air quality professionals (e.g., state, local, Tribal air agency staff, consultants, researchers) to more efficiently work with data and perform further analysis in the Air Sensor Network Analysis Tool (ASNAT), Google Earth or Geographic Information System (GIS) programs, the Real Time Geospatial Data Viewer (RETIGO), or other applications they already use for air quality analysis and management.</p>","PeriodicalId":521089,"journal":{"name":"Air","volume":"3 3","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/air3030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data is needed to understand local air quality, reduce exposure, and mitigate the negative impacts on human health. Measuring local air quality often requires a hybrid monitoring approach consisting of the national air monitoring network and one or more networks of air sensors. However, it can be challenging to combine this data to produce a consistent picture of air quality, largely because sensor data is produced in a variety of formats. Users may have difficulty reformatting, performing basic quality control steps, and using the data for their intended purpose. We developed an R-Shiny application that allows users to import text-based air sensor data, describe the format, perform basic quality control, and export the data to standard formats through a user-friendly interface. Format information can be saved to speed up the processing of additional sensors of the same type. This tool can be used by air quality professionals (e.g., state, local, Tribal air agency staff, consultants, researchers) to more efficiently work with data and perform further analysis in the Air Sensor Network Analysis Tool (ASNAT), Google Earth or Geographic Information System (GIS) programs, the Real Time Geospatial Data Viewer (RETIGO), or other applications they already use for air quality analysis and management.

空气传感器数据统一器:R-Shiny应用。
需要数据来了解当地空气质量,减少接触并减轻对人类健康的负面影响。测量当地空气质量通常需要一种混合监测方法,包括国家空气监测网络和一个或多个空气传感器网络。然而,将这些数据结合起来以产生一致的空气质量图像可能具有挑战性,主要是因为传感器数据以各种格式产生。用户可能难以重新格式化、执行基本的质量控制步骤以及将数据用于预期目的。我们开发了一个R-Shiny应用程序,允许用户导入基于文本的空气传感器数据,描述格式,执行基本质量控制,并通过用户友好的界面将数据导出为标准格式。格式信息可以保存,以加快处理其他相同类型的传感器。空气质量专业人员(例如,州、地方、部落空气机构工作人员、顾问、研究人员)可以使用该工具更有效地处理数据,并在空气传感器网络分析工具(ASNAT)、谷歌地球或地理信息系统(GIS)程序、实时地理空间数据查看器(RETIGO)或他们已经用于空气质量分析和管理的其他应用程序中进行进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Air
Air
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信