Artificial Metalloenzymes in Artificial Sanctuaries Through Liquid-Liquid Phase Separation.

IF 1.1 Q3 BIOLOGY
Kaixin Wang, Guangjie Zhang, Lei Zhang, Yugang Bai, Tong Wu
{"title":"Artificial Metalloenzymes in Artificial Sanctuaries Through Liquid-Liquid Phase Separation.","authors":"Kaixin Wang, Guangjie Zhang, Lei Zhang, Yugang Bai, Tong Wu","doi":"10.21769/BioProtoc.5465","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial metalloenzymes (ArMs) hold great promise for expanding the toolbox of non-natural transformations usable in living systems, such as cells, plants, and animals. However, their practical application remains challenging, primarily due to their unsatisfactory stability and inefficient intracellular assembly. We recently reported a new strategy, called artificial metalloenzymes in artificial sanctuaries (ArMAS) through liquid-liquid phase separation (LLPS), to enhance the performance of ArMs in cells by placing them in more friendly artificial microenvironments. Here, this protocol describes the detailed method for using this ArMAS-LLPS strategy, a robust way to create artificial compartments using an ArM protein scaffold through LLPS and construct ArMs within using self-labeling cofactor anchoring reactions. In detail, in <i>Escherichia coli</i>, membraneless protein condensates are formed by expressing a self-labeling fusion protein, HaloTag-SNAPTag (HS) and act as intracellular sanctuaries. Simultaneously, the HS scaffolds enable site-specific, bioorthogonal conjugation with synthetic metal cofactors, facilitating efficient ArM formation within the LLPS domains. This strategy can significantly enhance the intracellular catalytic activity and stability of the named HS-based ArMs, allowing whole-cell catalysis to be performed to enable abiotic transformations both in vitro and in vivo. The protocol provides a proof-of-concept approach for researchers aiming to develop stable ArM-based whole-cell catalytic systems for synthetic biology and therapeutic applications. Key features • Describes a robust and reproducible protocol for constructing artificial metalloenzymes (ArMs) in living <i>E. coli</i> cells using protein-driven liquid-liquid phase separation (LLPS). • Demonstrates how intracellular LLPS regions can serve as protective catalytic microenvironments, significantly improving ArM stability and catalytic turnover. • Applicable to various abiotic catalytic transformations, including olefin metathesis.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 19","pages":"e5465"},"PeriodicalIF":1.1000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial metalloenzymes (ArMs) hold great promise for expanding the toolbox of non-natural transformations usable in living systems, such as cells, plants, and animals. However, their practical application remains challenging, primarily due to their unsatisfactory stability and inefficient intracellular assembly. We recently reported a new strategy, called artificial metalloenzymes in artificial sanctuaries (ArMAS) through liquid-liquid phase separation (LLPS), to enhance the performance of ArMs in cells by placing them in more friendly artificial microenvironments. Here, this protocol describes the detailed method for using this ArMAS-LLPS strategy, a robust way to create artificial compartments using an ArM protein scaffold through LLPS and construct ArMs within using self-labeling cofactor anchoring reactions. In detail, in Escherichia coli, membraneless protein condensates are formed by expressing a self-labeling fusion protein, HaloTag-SNAPTag (HS) and act as intracellular sanctuaries. Simultaneously, the HS scaffolds enable site-specific, bioorthogonal conjugation with synthetic metal cofactors, facilitating efficient ArM formation within the LLPS domains. This strategy can significantly enhance the intracellular catalytic activity and stability of the named HS-based ArMs, allowing whole-cell catalysis to be performed to enable abiotic transformations both in vitro and in vivo. The protocol provides a proof-of-concept approach for researchers aiming to develop stable ArM-based whole-cell catalytic systems for synthetic biology and therapeutic applications. Key features • Describes a robust and reproducible protocol for constructing artificial metalloenzymes (ArMs) in living E. coli cells using protein-driven liquid-liquid phase separation (LLPS). • Demonstrates how intracellular LLPS regions can serve as protective catalytic microenvironments, significantly improving ArM stability and catalytic turnover. • Applicable to various abiotic catalytic transformations, including olefin metathesis.

液-液相分离技术在人工保护区中的应用。
人工金属酶(ArMs)在扩展可用于生命系统(如细胞、植物和动物)的非自然转化工具箱方面具有很大的前景。然而,它们的实际应用仍然具有挑战性,主要是由于它们的稳定性不理想和细胞内组装效率低下。我们最近报道了一种新的策略,通过液-液相分离(LLPS),称为人工金属酶在人工保护区(ArMAS),通过将它们放置在更友好的人工微环境中来提高arm在细胞中的性能。在这里,本协议描述了使用这种ArMAS-LLPS策略的详细方法,这是一种通过LLPS使用ArM蛋白支架创建人工隔间并使用自标记辅因子锚定反应构建ArM的稳健方法。具体来说,在大肠杆菌中,无膜蛋白凝聚物通过表达一种自标记融合蛋白HaloTag-SNAPTag (HS)而形成,并作为细胞内庇护所。同时,HS支架能够与合成金属辅因子进行位点特异性、生物正交偶联,促进在LLPS结构域内高效形成ArM。该策略可以显著增强命名的HS-based arm的细胞内催化活性和稳定性,允许在体外和体内进行全细胞催化,从而实现非生物转化。该方案为旨在为合成生物学和治疗应用开发稳定的基于arm的全细胞催化系统的研究人员提供了一种概念验证方法。•描述了一种稳健且可重复的方案,用于使用蛋白质驱动的液-液相分离(LLPS)在活的大肠杆菌细胞中构建人工金属酶(ArMs)。•展示了细胞内LLPS区域如何作为保护性催化微环境,显著提高ArM稳定性和催化转化率。•适用于各种非生物催化转化,包括烯烃分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信