A Protocol Guide to Micro Milling for Bio-Microfluidics.

IF 1.1 Q3 BIOLOGY
Hannah L Viola, Vishwa Vasani, Shuichi Takayama
{"title":"A Protocol Guide to Micro Milling for Bio-Microfluidics.","authors":"Hannah L Viola, Vishwa Vasani, Shuichi Takayama","doi":"10.21769/BioProtoc.5459","DOIUrl":null,"url":null,"abstract":"<p><p>Micro milling is a subtractive manufacturing method for fabricating micro-scale three-dimensional features from hard substrates like acrylic, wood, or metal. It enables rapid prototyping of biomicrofluidic devices and master molds, offering advantages over traditional fabrication methods like photolithography. Micro milling is seldom applied in the fabrication of organs-on-a-chip, in part due to its requirement for knowledge of computer numerical machining techniques that are required to program and operate micro mills. This protocol provides practical guidelines for micro milling-based fabrication of organs-on-a-chip, including toolpath optimization, SolidWorks and Fusion workflows, and troubleshooting tips. A case study demonstrates the design and fabrication of master molds for a human airway-on-a-chip, validated in a recent publication. This resource supports the expansion of micro milling techniques into organs-on-a-chip, which will enhance capacity for rapid device prototyping and design of more complex 3D features that better recapitulate human physiology. Key features • Stepwise guide to lung-on-a-chip design and fabrication via micro milling, a specialized type of computer numerical control (CNC) machining. • Demonstration of model design, tool path optimization, micro milling, device assembly, and cell culture. • Example SolidWorks and Fusion documents illustrating best practices for model design and toolpath generation.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 19","pages":"e5459"},"PeriodicalIF":1.1000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Micro milling is a subtractive manufacturing method for fabricating micro-scale three-dimensional features from hard substrates like acrylic, wood, or metal. It enables rapid prototyping of biomicrofluidic devices and master molds, offering advantages over traditional fabrication methods like photolithography. Micro milling is seldom applied in the fabrication of organs-on-a-chip, in part due to its requirement for knowledge of computer numerical machining techniques that are required to program and operate micro mills. This protocol provides practical guidelines for micro milling-based fabrication of organs-on-a-chip, including toolpath optimization, SolidWorks and Fusion workflows, and troubleshooting tips. A case study demonstrates the design and fabrication of master molds for a human airway-on-a-chip, validated in a recent publication. This resource supports the expansion of micro milling techniques into organs-on-a-chip, which will enhance capacity for rapid device prototyping and design of more complex 3D features that better recapitulate human physiology. Key features • Stepwise guide to lung-on-a-chip design and fabrication via micro milling, a specialized type of computer numerical control (CNC) machining. • Demonstration of model design, tool path optimization, micro milling, device assembly, and cell culture. • Example SolidWorks and Fusion documents illustrating best practices for model design and toolpath generation.

生物微流体微铣削协议指南。
微铣削是一种减法制造方法,用于从丙烯酸、木材或金属等硬基材上制造微尺度三维特征。它使生物微流体装置和主模具的快速原型制作成为可能,比光刻等传统制造方法具有优势。微铣削很少应用于芯片上器官的制造,部分原因是它需要计算机数值加工技术的知识,这些技术需要编程和操作微铣削。该协议为芯片上器官的微铣削制造提供了实用指南,包括刀具路径优化,SolidWorks和Fusion工作流程以及故障排除提示。一个案例研究演示了设计和制造一个人类气道芯片的主模具,验证在最近的出版物。该资源支持将微铣削技术扩展到芯片上的器官,这将增强快速设备原型设计和设计更复杂的3D特征的能力,从而更好地概括人体生理学。主要特点•通过微铣削逐步指导肺部芯片设计和制造,这是一种专业类型的计算机数控(CNC)加工。演示模型设计,刀具路径优化,微铣削,设备组装和细胞培养。•SolidWorks和Fusion文档示例说明了模型设计和工具路径生成的最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信