{"title":"Barrington's nucleus: a pontine defecation brain area exhibiting prompt and delayed defecation responses.","authors":"Kota Bussaka, Yoshimasa Tanaka, Kunio Kondoh, Ken-Ichiro Nakajima, Takatoshi Chinen, Xiaopeng Bai, Yosuke Minoda, Hiroko Ikeda, Kazuki Inamura, Tsubasa Takeshima, Haruei Ogino, Eikichi Ihara, Yasuhiko Minokoshi, Yoshihiro Ogawa","doi":"10.1016/j.jcmgh.2025.101635","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Chronic constipation has attracted considerable attention because of its negative impact on quality of life. While defecation depends on local anorectal motility coordinated by the central nervous system, how it is regulated by the brain remains unclear.</p><p><strong>Methods: </strong>Brain areas responsible for defecation, known as the defecation brain area (DBA), were identified using a trans-synaptic tracing virus, pseudorabies virus (PRV). Candidate DBAs were assessed using opto- and chemogenetic methods and in vivo monitoring of neural activity.</p><p><strong>Results: </strong>A significant number of PRV-infected cells were observed in the Barrington's nucleus (Bar), locus coeruleus (LC), ventrolateral periaqueductal gray (vlPAG), and paraventricular hypothalamic nucleus (PVH) following virus infection in the distal colon. Opto- and chemogenetic activation studies revealed that vesicular glutamate transporter 2 (VGluT2) neurons in the Bar and LC, and corticotropin-releasing hormone (CRH) neurons in the Bar exhibit prompt (short-acting) and delayed (long-lasting) contractions in the distal colon, respectively. Their neural activities increased and peaked during spontaneous defecation. In contrast, activation of tyrosine hydroxylase neurons in the LC, which co-express VGluT2, exhibited no response. PRV experiments revealed that PVH<sup>VGluT2</sup> and vlPAG<sup>CRH</sup> neurons are upstream neurons that connect to Bar<sup>VGluT2</sup> neurons, and their optogenetic activation resulted in a contraction of the distal colon.</p><p><strong>Conclusions: </strong>The study is the first to show that the Bar works as the pontine DBA, where Bar<sup>VGluT2</sup> and Bar<sup>CRH</sup> neurons exert prompt and delayed defecation activity, respectively. PVH<sup>VGluT2</sup> and vlPAG<sup>CRH</sup> neurons are candidates for upstream neurons that regulate defecation through Bar<sup>VGluT2</sup> neurons.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101635"},"PeriodicalIF":7.1000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcmgh.2025.101635","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Chronic constipation has attracted considerable attention because of its negative impact on quality of life. While defecation depends on local anorectal motility coordinated by the central nervous system, how it is regulated by the brain remains unclear.
Methods: Brain areas responsible for defecation, known as the defecation brain area (DBA), were identified using a trans-synaptic tracing virus, pseudorabies virus (PRV). Candidate DBAs were assessed using opto- and chemogenetic methods and in vivo monitoring of neural activity.
Results: A significant number of PRV-infected cells were observed in the Barrington's nucleus (Bar), locus coeruleus (LC), ventrolateral periaqueductal gray (vlPAG), and paraventricular hypothalamic nucleus (PVH) following virus infection in the distal colon. Opto- and chemogenetic activation studies revealed that vesicular glutamate transporter 2 (VGluT2) neurons in the Bar and LC, and corticotropin-releasing hormone (CRH) neurons in the Bar exhibit prompt (short-acting) and delayed (long-lasting) contractions in the distal colon, respectively. Their neural activities increased and peaked during spontaneous defecation. In contrast, activation of tyrosine hydroxylase neurons in the LC, which co-express VGluT2, exhibited no response. PRV experiments revealed that PVHVGluT2 and vlPAGCRH neurons are upstream neurons that connect to BarVGluT2 neurons, and their optogenetic activation resulted in a contraction of the distal colon.
Conclusions: The study is the first to show that the Bar works as the pontine DBA, where BarVGluT2 and BarCRH neurons exert prompt and delayed defecation activity, respectively. PVHVGluT2 and vlPAGCRH neurons are candidates for upstream neurons that regulate defecation through BarVGluT2 neurons.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.