Improving tuberculosis-related knowledge in tuberculosis patients: Protocol for the development and validation of an evidence-based Q&A robot powered by large language models.

IF 3.3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-10-08 eCollection Date: 2025-01-01 DOI:10.1177/20552076251384143
Lanping Zhang, Wenjun He, Xiufen Wang, Xue Li, Jinghui Chang, Dong Roman Xu, Guobao Li
{"title":"Improving tuberculosis-related knowledge in tuberculosis patients: Protocol for the development and validation of an evidence-based Q&A robot powered by large language models.","authors":"Lanping Zhang, Wenjun He, Xiufen Wang, Xue Li, Jinghui Chang, Dong Roman Xu, Guobao Li","doi":"10.1177/20552076251384143","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inadequate health knowledge of tuberculosis patients is one of the causes of poor adherence among tuberculosis patients in China's tuberculosis control. In this study, we will develop and validate the effectiveness of a large language model (LLM) to improve the health knowledge of tuberculosis patients.</p><p><strong>Methods: </strong>We will design a LLM application tailored to tuberculosis scenarios and evaluate its effectiveness in tuberculosis patient health education through a single-center, factorial-design randomized controlled trial. The study will feature a factorial design with two factors: LLMs-based health education model and a peer-intervention health education model, each with two levels (yes/no). A total of 148 tuberculosis (TB) patients in the intensive treatment phase will be randomly allocated to four groups through simple randomization. The primary outcome will be the patients' level of personal health knowledge about tuberculosis, measured through questionnaires administered at discharge and three months later.</p><p><strong>Conclusion: </strong>We are the first study in China to apply LLMs to tuberculosis health education. Tailored specifically for TB, our model uses certified guidelines and expert consensus to minimize inaccuracies. Large language models provide access to personalized, private health information, and reducing stigma. Instead of creating a new platform, we use the popular WeChat platform to deliver education via videos, text, and images, enhancing accessibility and engagement. This innovative approach aims to improve patient adherence and contribute to better TB management and disease control outcomes.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251384143"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251384143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Inadequate health knowledge of tuberculosis patients is one of the causes of poor adherence among tuberculosis patients in China's tuberculosis control. In this study, we will develop and validate the effectiveness of a large language model (LLM) to improve the health knowledge of tuberculosis patients.

Methods: We will design a LLM application tailored to tuberculosis scenarios and evaluate its effectiveness in tuberculosis patient health education through a single-center, factorial-design randomized controlled trial. The study will feature a factorial design with two factors: LLMs-based health education model and a peer-intervention health education model, each with two levels (yes/no). A total of 148 tuberculosis (TB) patients in the intensive treatment phase will be randomly allocated to four groups through simple randomization. The primary outcome will be the patients' level of personal health knowledge about tuberculosis, measured through questionnaires administered at discharge and three months later.

Conclusion: We are the first study in China to apply LLMs to tuberculosis health education. Tailored specifically for TB, our model uses certified guidelines and expert consensus to minimize inaccuracies. Large language models provide access to personalized, private health information, and reducing stigma. Instead of creating a new platform, we use the popular WeChat platform to deliver education via videos, text, and images, enhancing accessibility and engagement. This innovative approach aims to improve patient adherence and contribute to better TB management and disease control outcomes.

提高结核病患者的结核病相关知识:开发和验证由大型语言模型驱动的循证问答机器人的方案。
背景:结核病患者健康知识不足是中国结核病防治依从性差的原因之一。在本研究中,我们将开发和验证一个大型语言模型(LLM)的有效性,以提高结核病患者的健康知识。方法:我们将设计一个适合结核病场景的法学硕士应用程序,并通过单中心、因子设计随机对照试验评估其在结核病患者健康教育中的有效性。本研究将采用两个因素的析因设计:基于llms的健康教育模型和同伴干预的健康教育模型,每个模型都有两个水平(是/否)。通过简单随机化,将148名处于强化治疗阶段的结核病患者随机分为4组。主要结果将是患者对结核病的个人健康知识水平,通过出院时和三个月后的问卷调查来衡量。结论:国内首次将法学硕士应用于结核病健康教育。我们的模型专为结核病量身定制,使用经过认证的指南和专家共识来最大限度地减少不准确性。大型语言模型提供了个性化的私人健康信息,并减少了耻辱感。我们没有创建一个新的平台,而是使用流行的微信平台,通过视频、文本和图像来提供教育,提高了可访问性和参与度。这种创新方法旨在提高患者的依从性,并有助于改善结核病管理和疾病控制结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信