In humble defence of unexplainable black box prediction models in healthcare.

IF 5.2 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Florien S van Royen, Hilde J P Weerts, Anne A H de Hond, Geert-Jan Geersing, Frans H Rutten, Karel G M Moons, Maarten van Smeden
{"title":"In humble defence of unexplainable black box prediction models in healthcare.","authors":"Florien S van Royen, Hilde J P Weerts, Anne A H de Hond, Geert-Jan Geersing, Frans H Rutten, Karel G M Moons, Maarten van Smeden","doi":"10.1016/j.jclinepi.2025.112013","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing complexity of prediction models for healthcare purposes - whether developed with or without artificial intelligence (AI) techniques - drives the urge to open complex 'black box' models using eXplainable AI (XAI) techniques. In this paper, we argue that XAI may not necessarily provide insights relevant to decision-making in the medical setting and can lead to misplaced trust and misinterpretation of the model's usability. An important limitation of XAI is the difficulty in avoiding causal interpretation, which may result in confirmation bias or false dismissal of the model when explanations conflict with clinical knowledge. Rather than expecting XAI to generate trust in black box prediction models to patients and healthcare providers, trust should be grounded in rigorous prediction model validations and model impact studies assessing the model's effectiveness on medical shared decision-making. In this paper, we therefore humbly defend the 'unexplainable' prediction models in healthcare.</p>","PeriodicalId":51079,"journal":{"name":"Journal of Clinical Epidemiology","volume":" ","pages":"112013"},"PeriodicalIF":5.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jclinepi.2025.112013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing complexity of prediction models for healthcare purposes - whether developed with or without artificial intelligence (AI) techniques - drives the urge to open complex 'black box' models using eXplainable AI (XAI) techniques. In this paper, we argue that XAI may not necessarily provide insights relevant to decision-making in the medical setting and can lead to misplaced trust and misinterpretation of the model's usability. An important limitation of XAI is the difficulty in avoiding causal interpretation, which may result in confirmation bias or false dismissal of the model when explanations conflict with clinical knowledge. Rather than expecting XAI to generate trust in black box prediction models to patients and healthcare providers, trust should be grounded in rigorous prediction model validations and model impact studies assessing the model's effectiveness on medical shared decision-making. In this paper, we therefore humbly defend the 'unexplainable' prediction models in healthcare.

为医疗领域无法解释的黑箱预测模型进行谦逊的辩护。
无论是否使用人工智能(AI)技术开发,用于医疗保健目的的预测模型越来越复杂,这促使人们迫切需要使用可解释人工智能(XAI)技术打开复杂的“黑匣子”模型。在本文中,我们认为XAI不一定能提供与医疗环境中的决策相关的见解,并可能导致错误的信任和对模型可用性的误解。XAI的一个重要限制是难以避免因果解释,当解释与临床知识相冲突时,这可能导致确认偏差或错误地驳回模型。与其期望XAI在黑盒预测模型中为患者和医疗保健提供者产生信任,信任应该建立在严格的预测模型验证和模型影响研究的基础上,评估模型对医疗共享决策的有效性。因此,在本文中,我们谦虚地为医疗保健中的“不可解释”预测模型辩护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Epidemiology
Journal of Clinical Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
12.00
自引率
6.90%
发文量
320
审稿时长
44 days
期刊介绍: The Journal of Clinical Epidemiology strives to enhance the quality of clinical and patient-oriented healthcare research by advancing and applying innovative methods in conducting, presenting, synthesizing, disseminating, and translating research results into optimal clinical practice. Special emphasis is placed on training new generations of scientists and clinical practice leaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信