Akito Yoshida, Rousslan Fernand Julien Dossa, Marina Di Vincenzo, Shivakanth Sujit, Hannah Douglas, Kai Arulkumaran
{"title":"A multi-user multi-robot multi-goal multi-device human-robot interaction manipulation benchmark.","authors":"Akito Yoshida, Rousslan Fernand Julien Dossa, Marina Di Vincenzo, Shivakanth Sujit, Hannah Douglas, Kai Arulkumaran","doi":"10.3389/frobt.2025.1528754","DOIUrl":null,"url":null,"abstract":"<p><p>One weakness of human-robot interaction (HRI) research is the lack of reproducible results, due to the lack of standardised benchmarks. In this work we introduce a multi-user multi-robot multi-goal multi-device manipulation benchmark (M4Bench), a flexible HRI platform in which multiple users can direct either a single-or multiple-simulated robots to perform a multi-goal pick-and-place task. Our software exposes a web-based visual interface, with support for mouse, keyboard, gamepad, eye tracker and electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be further extended using native browser libraries or WebSocket interfaces, allowing researchers to add support for their own devices. We also provide tracking for several HRI metrics, such as task completion and command selection time, enabling quantitative comparisons between different user interfaces and devices. We demonstrate the utility of our benchmark with a user study (n = 50) conducted to compare five different input devices, and also compare single-vs. multi-user control. In the pick-and-place task, we found that users performed worse when using the eye tracker + EMG device pair, as compared to mouse + keyboard or gamepad + gamepad, over four quantitative metrics (corrected p <math><mrow><mo><</mo></mrow> </math> 0.001). Our software is available at https://github.com/arayabrain/m4bench.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1528754"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1528754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
One weakness of human-robot interaction (HRI) research is the lack of reproducible results, due to the lack of standardised benchmarks. In this work we introduce a multi-user multi-robot multi-goal multi-device manipulation benchmark (M4Bench), a flexible HRI platform in which multiple users can direct either a single-or multiple-simulated robots to perform a multi-goal pick-and-place task. Our software exposes a web-based visual interface, with support for mouse, keyboard, gamepad, eye tracker and electromyograph/electroencephalograph (EMG/EEG) user inputs. It can be further extended using native browser libraries or WebSocket interfaces, allowing researchers to add support for their own devices. We also provide tracking for several HRI metrics, such as task completion and command selection time, enabling quantitative comparisons between different user interfaces and devices. We demonstrate the utility of our benchmark with a user study (n = 50) conducted to compare five different input devices, and also compare single-vs. multi-user control. In the pick-and-place task, we found that users performed worse when using the eye tracker + EMG device pair, as compared to mouse + keyboard or gamepad + gamepad, over four quantitative metrics (corrected p 0.001). Our software is available at https://github.com/arayabrain/m4bench.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.