DreamerNav: learning-based autonomous navigation in dynamic indoor environments using world models.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-26 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1655171
Stuart Shanks, Jonathan Embley-Riches, Jianheng Liu, Andromachi Maria Delfaki, Carlo Ciliberto, Dimitrios Kanoulas
{"title":"DreamerNav: learning-based autonomous navigation in dynamic indoor environments using world models.","authors":"Stuart Shanks, Jonathan Embley-Riches, Jianheng Liu, Andromachi Maria Delfaki, Carlo Ciliberto, Dimitrios Kanoulas","doi":"10.3389/frobt.2025.1655171","DOIUrl":null,"url":null,"abstract":"<p><p>Robust autonomous navigation in complex, dynamic indoor environments remains a central challenge in robotics, requiring agents to make adaptive decisions in real time under partial observability and uncertain obstacle motion. This paper presents DreamerNav, a robot-agnostic navigation framework that extends DreamerV3, a state-of-the-art world model-based reinforcement learning algorithm, with multimodal spatial perception, hybrid global-local planning, and curriculum-based training. By formulating navigation as a Partially Observable Markov Decision Process (POMDP), the system enables agents to integrate egocentric depth images with a structured local occupancy map encoding dynamic obstacle positions, historical trajectories, points of interest, and a global A* path. A Recurrent State-Space Model (RSSM) learns stochastic and deterministic latent dynamics, supporting long-horizon prediction and collision-free path planning in cluttered, dynamic scenes. Training is carried out in high-fidelity, photorealistic simulation using NVIDIA Isaac Sim, gradually increasing task complexity to improve learning stability, sample efficiency, and generalization. We benchmark against NoMaD, ViNT, and A*, showing superior success rates and adaptability in dynamic environments. Real-world proof-of-concept trials on two quadrupedal robots without retraining further validate the framework's robustness and quadruped robot platform independence.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1655171"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1655171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust autonomous navigation in complex, dynamic indoor environments remains a central challenge in robotics, requiring agents to make adaptive decisions in real time under partial observability and uncertain obstacle motion. This paper presents DreamerNav, a robot-agnostic navigation framework that extends DreamerV3, a state-of-the-art world model-based reinforcement learning algorithm, with multimodal spatial perception, hybrid global-local planning, and curriculum-based training. By formulating navigation as a Partially Observable Markov Decision Process (POMDP), the system enables agents to integrate egocentric depth images with a structured local occupancy map encoding dynamic obstacle positions, historical trajectories, points of interest, and a global A* path. A Recurrent State-Space Model (RSSM) learns stochastic and deterministic latent dynamics, supporting long-horizon prediction and collision-free path planning in cluttered, dynamic scenes. Training is carried out in high-fidelity, photorealistic simulation using NVIDIA Isaac Sim, gradually increasing task complexity to improve learning stability, sample efficiency, and generalization. We benchmark against NoMaD, ViNT, and A*, showing superior success rates and adaptability in dynamic environments. Real-world proof-of-concept trials on two quadrupedal robots without retraining further validate the framework's robustness and quadruped robot platform independence.

DreamerNav:使用世界模型在动态室内环境中进行基于学习的自主导航。
在复杂、动态的室内环境中,强大的自主导航仍然是机器人技术的核心挑战,这需要智能体在部分可观察性和不确定障碍物运动的情况下实时做出自适应决策。本文介绍了DreamerNav,一个机器人不可知的导航框架,扩展了DreamerV3,一个最先进的基于世界模型的强化学习算法,具有多模态空间感知,混合全局-局部规划和基于课程的培训。通过将导航定义为部分可观察马尔可夫决策过程(POMDP),该系统使智能体能够将以自我为中心的深度图像与结构化的局部占用地图结合起来,该地图编码了动态障碍物位置、历史轨迹、兴趣点和全局a *路径。一个循环状态空间模型(RSSM)学习随机和确定性的潜在动力学,在混乱的动态场景中支持长视界预测和无碰撞路径规划。训练采用NVIDIA Isaac Sim进行高保真逼真模拟,逐步增加任务复杂度,提高学习稳定性、样本效率和泛化能力。我们以NoMaD、ViNT和A*为基准,在动态环境中显示出更高的成功率和适应性。在两个无需再训练的四足机器人上进行的现实世界概念验证试验进一步验证了该框架的鲁棒性和四足机器人平台的独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信