Bernadeta Dadonaite, Sheri Harari, Brendan B Larsen, Lucas Kampman, Alex Harteloo, Anna Elias-Warren, Helen Y Chu, Jesse D Bloom
{"title":"Spike mutations that affect the function and antigenicity of recent KP.3.1.1-like SARS-CoV-2 variants.","authors":"Bernadeta Dadonaite, Sheri Harari, Brendan B Larsen, Lucas Kampman, Alex Harteloo, Anna Elias-Warren, Helen Y Chu, Jesse D Bloom","doi":"10.1128/jvi.01423-25","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here, we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to the ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating that these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478, and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating the RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.IMPORTANCEThis study measures how mutations to the spike of a SARS-CoV-2 variant that circulated in early 2025 affect its function and recognition by both the polyclonal antibodies produced by the human immune system and monoclonal antibodies used as prophylactics. These measurements are made with a pseudovirus system that enables safe study of viral protein mutations using virions that can only infect cells once. The study identifies mutations that decrease recognition by current human antibody immunity; many of these mutations are increasingly being observed in new viral variants. It also shows the importance of mutations that move the spike's receptor-binding domain up or down. Overall, these results are useful for forecasting viral evolution and assessing which newly emerging variants have reduced recognition by immunity and antibody prophylactics.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0142325"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01423-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here, we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to the ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating that these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478, and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating the RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.IMPORTANCEThis study measures how mutations to the spike of a SARS-CoV-2 variant that circulated in early 2025 affect its function and recognition by both the polyclonal antibodies produced by the human immune system and monoclonal antibodies used as prophylactics. These measurements are made with a pseudovirus system that enables safe study of viral protein mutations using virions that can only infect cells once. The study identifies mutations that decrease recognition by current human antibody immunity; many of these mutations are increasingly being observed in new viral variants. It also shows the importance of mutations that move the spike's receptor-binding domain up or down. Overall, these results are useful for forecasting viral evolution and assessing which newly emerging variants have reduced recognition by immunity and antibody prophylactics.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.