Mettl1-mediated m7G modification of Fgfr2 regulates osteogenic and chondrogenic differentiation of mesenchymal stem cells.

IF 10 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
International Journal of Biological Sciences Pub Date : 2025-09-03 eCollection Date: 2025-01-01 DOI:10.7150/ijbs.114889
Quanfeng Li, Yunhui Zhang, Pengfei Ji, Yibin Zhang, Jianan Jiang, Jiahao Jin, Zihao Yuan, Guangqi Tian, Mingxi Cai, Pei Feng, Yanfeng Wu, Wenjie Liu, Peng Wang
{"title":"Mettl1-mediated m<sup>7</sup>G modification of Fgfr2 regulates osteogenic and chondrogenic differentiation of mesenchymal stem cells.","authors":"Quanfeng Li, Yunhui Zhang, Pengfei Ji, Yibin Zhang, Jianan Jiang, Jiahao Jin, Zihao Yuan, Guangqi Tian, Mingxi Cai, Pei Feng, Yanfeng Wu, Wenjie Liu, Peng Wang","doi":"10.7150/ijbs.114889","DOIUrl":null,"url":null,"abstract":"<p><p>N7-methylguanosine (m<sup>7</sup>G) is a prevalent RNA modification and plays fundamental roles in embryonic stem cell self-renewal and differentiation. However, its specific contributions to mesenchymal stem cell differentiation during skeletal development remain poorly understood. In this study, we demonstrate that specific deletion of the m<sup>7</sup>G methyltransferase Mettl1 in mesenchymal lineage cells causes severe bone development defects, manifesting as dramatic limb shortening at birth. The absence of Mettl1 in mesenchymal stem cells significantly hinders osteoblast and chondrocyte differentiation. Integrative analyses of single-cell RNA-sequencing and m<sup>7</sup>G-MeRIP sequencing demonstrate that Mettl1 ablation disrupts m<sup>7</sup>G modifications of Fgfr2, resulting in reduced its mRNA stability. Fgfr2 downregulation impairs the PI3K-AKT and MAPK signaling pathways, which decreases Sp1 phosphorylation and promotes its ubiquitin-mediated degradation, ultimately leading to reduced transcription of Col1a1 and Col2a1. Pharmacological reactivation of Fgfr2 signaling rescues the defects caused by Mettl1 deletion. Our findings highlight the critical role of Mettl1-mediated m<sup>7</sup>G modification in regulating osteogenic and chondrogenic differentiation of mesenchymal stem cells during bone development and provide new insights into the regulatory mechanisms of RNA modifications in skeletal biology.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"21 13","pages":"5704-5724"},"PeriodicalIF":10.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12509694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.114889","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

N7-methylguanosine (m7G) is a prevalent RNA modification and plays fundamental roles in embryonic stem cell self-renewal and differentiation. However, its specific contributions to mesenchymal stem cell differentiation during skeletal development remain poorly understood. In this study, we demonstrate that specific deletion of the m7G methyltransferase Mettl1 in mesenchymal lineage cells causes severe bone development defects, manifesting as dramatic limb shortening at birth. The absence of Mettl1 in mesenchymal stem cells significantly hinders osteoblast and chondrocyte differentiation. Integrative analyses of single-cell RNA-sequencing and m7G-MeRIP sequencing demonstrate that Mettl1 ablation disrupts m7G modifications of Fgfr2, resulting in reduced its mRNA stability. Fgfr2 downregulation impairs the PI3K-AKT and MAPK signaling pathways, which decreases Sp1 phosphorylation and promotes its ubiquitin-mediated degradation, ultimately leading to reduced transcription of Col1a1 and Col2a1. Pharmacological reactivation of Fgfr2 signaling rescues the defects caused by Mettl1 deletion. Our findings highlight the critical role of Mettl1-mediated m7G modification in regulating osteogenic and chondrogenic differentiation of mesenchymal stem cells during bone development and provide new insights into the regulatory mechanisms of RNA modifications in skeletal biology.

mettl1介导的Fgfr2的m7G修饰调节间充质干细胞的成骨和软骨分化。
n7 -甲基鸟苷(m7G)是一种普遍存在的RNA修饰,在胚胎干细胞的自我更新和分化中起着重要作用。然而,它在骨骼发育过程中对间充质干细胞分化的具体贡献仍然知之甚少。在这项研究中,我们证明了间充质谱系细胞中m7G甲基转移酶Mettl1的特异性缺失会导致严重的骨发育缺陷,表现为出生时肢体明显缩短。间充质干细胞中缺乏Mettl1会显著阻碍成骨细胞和软骨细胞的分化。单细胞rna测序和m7G- merip测序的综合分析表明,Mettl1消融破坏了Fgfr2的m7G修饰,导致其mRNA稳定性降低。Fgfr2下调会损害PI3K-AKT和MAPK信号通路,从而降低Sp1磷酸化并促进其泛素介导的降解,最终导致Col1a1和Col2a1转录减少。Fgfr2信号的药理学再激活可挽救Mettl1缺失引起的缺陷。我们的研究结果强调了mettl1介导的m7G修饰在骨发育过程中调节间充质干细胞成骨和软骨分化的关键作用,并为骨骼生物学中RNA修饰的调节机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信