{"title":"Context-informed few-shot molecular property prediction via heterogeneous meta-learning.","authors":"Junhao Xue, Jun Liu, Kai Chen","doi":"10.1016/j.csbj.2025.08.016","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular property prediction is essential in diversified applications, as it helps identify molecules with the desired characteristics. However, the task often suffers from limited data, making the few-shot learning challenging. We introduce a Context-informed Few-shot Molecular Property Prediction via a Heterogeneous Meta-Learning approach, which employs graph neural networks combined with self-attention encoders to effectively extract and integrate both property-specific and property-shared molecular features, respectively. Based on the property-shared molecular features, we further infer molecular relations by using an adaptive relational learning module. The final molecular embedding is improved by aligning with the property label in the property-specific classifier. Furthermore, we employ a heterogeneous meta-learning strategy that updates parameters of the property-specific features within individual tasks in the inner loop and jointly updates all parameters in the outer loop. This enhances the model's ability to effectively capture both general and contextual information, leading to a substantial improvement in predictive accuracy. The model's performance was rigorously evaluated across various real molecular datasets, showcasing its superiority over current methods, especially in challenging few-shot learning scenarios.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"4173-4182"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.08.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular property prediction is essential in diversified applications, as it helps identify molecules with the desired characteristics. However, the task often suffers from limited data, making the few-shot learning challenging. We introduce a Context-informed Few-shot Molecular Property Prediction via a Heterogeneous Meta-Learning approach, which employs graph neural networks combined with self-attention encoders to effectively extract and integrate both property-specific and property-shared molecular features, respectively. Based on the property-shared molecular features, we further infer molecular relations by using an adaptive relational learning module. The final molecular embedding is improved by aligning with the property label in the property-specific classifier. Furthermore, we employ a heterogeneous meta-learning strategy that updates parameters of the property-specific features within individual tasks in the inner loop and jointly updates all parameters in the outer loop. This enhances the model's ability to effectively capture both general and contextual information, leading to a substantial improvement in predictive accuracy. The model's performance was rigorously evaluated across various real molecular datasets, showcasing its superiority over current methods, especially in challenging few-shot learning scenarios.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology