Thomas A Bellio, Andre Krunic, Mary S Campion, Rohan Dupaguntla, Adam Labadorf, Thor D Stein, Honghuang Lin, Tiffany J Mellott, Jan K Blusztajn
{"title":"Perinatal Choline Supplementation Promotes Resilience Against Progression of Alzheimer's Disease-Like Brain Transcriptomic Signatures in App<sup>NL-G-F</sup> Mice.","authors":"Thomas A Bellio, Andre Krunic, Mary S Campion, Rohan Dupaguntla, Adam Labadorf, Thor D Stein, Honghuang Lin, Tiffany J Mellott, Jan K Blusztajn","doi":"10.1111/acel.70148","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD)-the leading cause of dementia-has no cure, inadequate treatment options, and a limited understanding of prevention measures. We have previously shown that perinatal dietary supplementation with the nutrient choline ameliorates cognitive deficits and reduces amyloidosis across the brain in App<sup>NL-G-F</sup> AD model mice. Here, we analyzed transcriptomic abnormalities in these mice and tested the hypothesis that they may be attenuated by perinatal choline supplementation (PCS). Wild-type (WT) and App<sup>NL-G-F</sup> dams consumed a diet containing 1.1 (control) or 5 g/kg (supplemented) of choline chloride from 2 weeks prior to mating until weaning. At 3, 6, 9, or 12 months of age, the offspring RNA was sequenced in the hippocampus and cerebral cortex. As compared to WT, the App<sup>NL-G-F</sup> mice reared on the control diet had age-dependent upregulation of expression of mRNAs and lncRNAs related to inflammation and reduced expression of mRNAs related to neuronal function. As compared to App<sup>NL-G-F</sup> mice on the control diet, PCS App<sup>NL-G-F</sup> mice increased expression of synaptic genes and downregulated inflammation-related genes starting at 6 months in the cortex; increased expression of GABAergic function and ATP metabolism genes, and decreased expression of inflammatory genes in the hippocampus at 12 months. These changes counteracted the effects of App<sup>NL-G-F</sup> genotype seen in mice on the control diet. The expression of many of these choline-protected genes correlated with clinical dementia rating, inflammation, and tauopathy in human postmortem dorsolateral prefrontal cortex AD samples, indicating their relevance to the disease process. The results suggest that adequate choline intake could be a preventive strategy for AD.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70148"},"PeriodicalIF":7.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70148","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD)-the leading cause of dementia-has no cure, inadequate treatment options, and a limited understanding of prevention measures. We have previously shown that perinatal dietary supplementation with the nutrient choline ameliorates cognitive deficits and reduces amyloidosis across the brain in AppNL-G-F AD model mice. Here, we analyzed transcriptomic abnormalities in these mice and tested the hypothesis that they may be attenuated by perinatal choline supplementation (PCS). Wild-type (WT) and AppNL-G-F dams consumed a diet containing 1.1 (control) or 5 g/kg (supplemented) of choline chloride from 2 weeks prior to mating until weaning. At 3, 6, 9, or 12 months of age, the offspring RNA was sequenced in the hippocampus and cerebral cortex. As compared to WT, the AppNL-G-F mice reared on the control diet had age-dependent upregulation of expression of mRNAs and lncRNAs related to inflammation and reduced expression of mRNAs related to neuronal function. As compared to AppNL-G-F mice on the control diet, PCS AppNL-G-F mice increased expression of synaptic genes and downregulated inflammation-related genes starting at 6 months in the cortex; increased expression of GABAergic function and ATP metabolism genes, and decreased expression of inflammatory genes in the hippocampus at 12 months. These changes counteracted the effects of AppNL-G-F genotype seen in mice on the control diet. The expression of many of these choline-protected genes correlated with clinical dementia rating, inflammation, and tauopathy in human postmortem dorsolateral prefrontal cortex AD samples, indicating their relevance to the disease process. The results suggest that adequate choline intake could be a preventive strategy for AD.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.