An Extension of the Euler–Maclaurin Summation Formula to Functions with Near Singularity

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Bowei Wu
{"title":"An Extension of the Euler–Maclaurin Summation Formula to Functions with Near Singularity","authors":"Bowei Wu","doi":"10.1137/24m1697530","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2119-2132, October 2025. <br/> Abstract. An extension of the Euler–Maclaurin (E–M) formula to near-singular functions is presented. This extension is derived based on earlier generalized E–M formulas for singular functions. The new E–M formulas consist of two components: a “singular” component that is a continuous extension of the earlier singular E–M formulas, and a “jump” component associated with the discontinuity of the integral with respect to a parameter that controls near singularity. The singular component of the new E–M formulas is an asymptotic series whose coefficients depend on the Hurwitz zeta function or the digamma function. Numerical examples of near-singular quadrature based on the extended E–M formula are presented, where accuracies of machine precision are achieved insensitive to the strength of the near singularity and with a very small number of quadrature nodes.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"137 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1697530","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2119-2132, October 2025.
Abstract. An extension of the Euler–Maclaurin (E–M) formula to near-singular functions is presented. This extension is derived based on earlier generalized E–M formulas for singular functions. The new E–M formulas consist of two components: a “singular” component that is a continuous extension of the earlier singular E–M formulas, and a “jump” component associated with the discontinuity of the integral with respect to a parameter that controls near singularity. The singular component of the new E–M formulas is an asymptotic series whose coefficients depend on the Hurwitz zeta function or the digamma function. Numerical examples of near-singular quadrature based on the extended E–M formula are presented, where accuracies of machine precision are achieved insensitive to the strength of the near singularity and with a very small number of quadrature nodes.
欧拉-麦克劳林求和公式在近奇异函数上的推广
SIAM数值分析杂志,第63卷,第5期,2119-2132页,2025年10月。摘要。将欧拉-麦克劳林(E-M)公式推广到近奇异函数。这个扩展是在先前广义奇异函数的E-M公式的基础上推导出来的。新的E-M公式由两个分量组成:一个是“奇异”分量,它是早期奇异E-M公式的连续扩展,一个是“跳跃”分量,它与控制近奇点的参数的积分不连续有关。新E-M公式的奇异分量是一个渐近级数,其系数依赖于Hurwitz zeta函数或digamma函数。给出了基于扩展E-M公式的近奇异正交的数值算例,其中机器精度的精度对近奇异强度不敏感,并且正交节点的数量非常少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信