Classical simulation and quantum resource theory of non-Gaussian optics

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-10-13 DOI:10.22331/q-2025-10-13-1881
Oliver Hahn, Ryuji Takagi, Giulia Ferrini, Hayata Yamasaki
{"title":"Classical simulation and quantum resource theory of non-Gaussian optics","authors":"Oliver Hahn, Ryuji Takagi, Giulia Ferrini, Hayata Yamasaki","doi":"10.22331/q-2025-10-13-1881","DOIUrl":null,"url":null,"abstract":"We propose efficient algorithms for classically simulating Gaussian unitaries and measurements applied to non-Gaussian initial states. The constructions are based on decomposing the non-Gaussian states into linear combinations of Gaussian states. We use an extension of the covariance matrix formalism to efficiently track relative phases in the superpositions of Gaussian states. We get an exact simulation algorithm, which costs quadratically with the number of Gaussian states required to represent the initial state, and an approximate simulation algorithm, which costs linearly with the $l_1$ norm of the coefficients associated with the superposition. We define measures of non-Gaussianity quantifying this simulation cost, which we call the Gaussian rank and the Gaussian extent. From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decompositions for states relevant to continuous-variable quantum computing.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"4 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-10-13-1881","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose efficient algorithms for classically simulating Gaussian unitaries and measurements applied to non-Gaussian initial states. The constructions are based on decomposing the non-Gaussian states into linear combinations of Gaussian states. We use an extension of the covariance matrix formalism to efficiently track relative phases in the superpositions of Gaussian states. We get an exact simulation algorithm, which costs quadratically with the number of Gaussian states required to represent the initial state, and an approximate simulation algorithm, which costs linearly with the $l_1$ norm of the coefficients associated with the superposition. We define measures of non-Gaussianity quantifying this simulation cost, which we call the Gaussian rank and the Gaussian extent. From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decompositions for states relevant to continuous-variable quantum computing.
非高斯光学的经典模拟与量子资源理论
我们提出了有效的算法经典模拟高斯一元和测量应用于非高斯初始状态。这种结构是基于将非高斯态分解成高斯态的线性组合。我们使用协方差矩阵形式的扩展来有效地跟踪高斯态叠加中的相对相位。我们得到了一个精确的模拟算法,它的代价与表示初始状态所需的高斯态的数目成二次关系,以及一个近似的模拟算法,它的代价与与叠加相关的系数的$l_1$范数成线性关系。我们定义了非高斯性的度量来量化这种模拟代价,我们称之为高斯秩和高斯范围。从量子资源理论的角度,我们研究了这类非高斯测度的性质,并计算了与连续变量量子计算相关的状态的最优分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信