Digital pharmacological twins: Bridging multi-scale modelling and artificial intelligence for precision medicine: The DIGPHAT consortium.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Jean-Baptiste Woillard, Sébastien Benzekry, Julie Josse, Mélanie White-Koning, Etienne Chatelut, Emmanuelle Comets, Florian Lemaitre, Bénédicte Franck, Matthieu Gregoire, Françoise Stanke-Labesque, Sarah Zohar, Moreno Ursino, Christophe Battail
{"title":"Digital pharmacological twins: Bridging multi-scale modelling and artificial intelligence for precision medicine: The DIGPHAT consortium.","authors":"Jean-Baptiste Woillard, Sébastien Benzekry, Julie Josse, Mélanie White-Koning, Etienne Chatelut, Emmanuelle Comets, Florian Lemaitre, Bénédicte Franck, Matthieu Gregoire, Françoise Stanke-Labesque, Sarah Zohar, Moreno Ursino, Christophe Battail","doi":"10.1016/j.therap.2025.09.006","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of digital twins in pharmacology presents transformative potential for precision medicine, enabling personalized treatment optimization through dynamic computational simulations of drug interactions at molecular, cellular, and patient levels. These advanced virtual replicas of a patient's biological system are designed to predict individual therapeutic responses with high fidelity, thereby moving beyond the one-size-fits-all paradigm. This paper explores the concept of digital pharmacological twins, detailing how they can integrate heterogeneous data, including multi-omic, pharmacokinetic, pharmacodynamic, clinical, and environmental information, and employing a synergy of advanced mechanistic and machine learning models. Using illustrative examples from ongoing international initiatives, this work highlights the methodological frameworks necessary for developing and validating such comprehensive predictive tools. We underscore the critical importance of model interoperability, robust data integration strategies, and rigorous validation to ensure clinical utility. Ultimately, digital pharmacological twins promise to enhance therapeutic efficacy, minimize adverse drug reactions, and accelerate the translation of pharmacological science into tangible patient benefits.</p>","PeriodicalId":23147,"journal":{"name":"Therapie","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.therap.2025.09.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of digital twins in pharmacology presents transformative potential for precision medicine, enabling personalized treatment optimization through dynamic computational simulations of drug interactions at molecular, cellular, and patient levels. These advanced virtual replicas of a patient's biological system are designed to predict individual therapeutic responses with high fidelity, thereby moving beyond the one-size-fits-all paradigm. This paper explores the concept of digital pharmacological twins, detailing how they can integrate heterogeneous data, including multi-omic, pharmacokinetic, pharmacodynamic, clinical, and environmental information, and employing a synergy of advanced mechanistic and machine learning models. Using illustrative examples from ongoing international initiatives, this work highlights the methodological frameworks necessary for developing and validating such comprehensive predictive tools. We underscore the critical importance of model interoperability, robust data integration strategies, and rigorous validation to ensure clinical utility. Ultimately, digital pharmacological twins promise to enhance therapeutic efficacy, minimize adverse drug reactions, and accelerate the translation of pharmacological science into tangible patient benefits.

数字药理学双胞胎:连接多尺度建模和精确医学的人工智能:DIGPHAT联盟。
数字双胞胎在药理学领域的出现为精准医疗提供了变革潜力,通过在分子、细胞和患者水平上对药物相互作用进行动态计算模拟,实现个性化治疗优化。这些先进的患者生物系统的虚拟复制品旨在以高保真度预测个体治疗反应,从而超越了一刀切的模式。本文探讨了数字药理学双胞胎的概念,详细介绍了它们如何整合异构数据,包括多组学、药代动力学、药效学、临床和环境信息,并采用先进的机制和机器学习模型的协同作用。通过使用正在进行的国际倡议的说明性例子,这项工作强调了开发和验证这种综合预测工具所必需的方法框架。我们强调了模型互操作性、稳健的数据集成策略和严格验证的重要性,以确保临床应用。最终,数字药理学双胞胎有望提高治疗效果,最大限度地减少药物不良反应,并加速将药理学科学转化为切实的患者利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapie
Therapie 医学-药学
CiteScore
3.50
自引率
7.70%
发文量
132
审稿时长
57 days
期刊介绍: Thérapie is a peer-reviewed journal devoted to Clinical Pharmacology, Therapeutics, Pharmacokinetics, Pharmacovigilance, Addictovigilance, Social Pharmacology, Pharmacoepidemiology, Pharmacoeconomics and Evidence-Based-Medicine. Thérapie publishes in French or in English original articles, general reviews, letters to the editor reporting original findings, correspondence relating to articles or letters published in the Journal, short articles, editorials on up-to-date topics, Pharmacovigilance or Addictovigilance reports that follow the French "guidelines" concerning good practice in pharmacovigilance publications. The journal also publishes thematic issues on topical subject. The journal is indexed in the main international data bases and notably in: Biosis Previews/Biological Abstracts, Embase/Excerpta Medica, Medline/Index Medicus, Science Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信