{"title":"Covariate Balancing With Measurement Error.","authors":"Xialing Wen, Ying Yan","doi":"10.1002/sim.70300","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there is a growing body of causal inference literature focusing on covariate balancing methods. These methods eliminate observed confounding by equalizing covariate moments between the treated and control groups. The validity of covariate balancing relies on an implicit assumption that all covariates are accurately measured, which is frequently violated in observational studies. Nevertheless, the impact of measurement error on covariate balancing is unclear, and there is no existing work on balancing mismeasured covariates adequately. In this article, we show that naively ignoring measurement error reversely increases the magnitude of covariate imbalance and induces bias to treatment effect estimation. We then propose a class of measurement error correction strategies for the existing covariate balancing methods. Theoretically, we show that these strategies successfully recover balance for all covariates and eliminate bias of treatment effect estimation. We assess the proposed correction methods in simulation studies and real data analysis.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 23-24","pages":"e70300"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there is a growing body of causal inference literature focusing on covariate balancing methods. These methods eliminate observed confounding by equalizing covariate moments between the treated and control groups. The validity of covariate balancing relies on an implicit assumption that all covariates are accurately measured, which is frequently violated in observational studies. Nevertheless, the impact of measurement error on covariate balancing is unclear, and there is no existing work on balancing mismeasured covariates adequately. In this article, we show that naively ignoring measurement error reversely increases the magnitude of covariate imbalance and induces bias to treatment effect estimation. We then propose a class of measurement error correction strategies for the existing covariate balancing methods. Theoretically, we show that these strategies successfully recover balance for all covariates and eliminate bias of treatment effect estimation. We assess the proposed correction methods in simulation studies and real data analysis.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.