2D materials-based next-generation multidimensional photodetectors.

IF 23.4 1区 物理与天体物理 Q1 Physics and Astronomy
Jiayue Han, Ziyi Fu, Jingxuan Wei, Song Han, Wenjie Deng, Fangchen Hu, Zhen Wang, Hongxi Zhou, He Yu, Jun Gou, Jun Wang
{"title":"2D materials-based next-generation multidimensional photodetectors.","authors":"Jiayue Han, Ziyi Fu, Jingxuan Wei, Song Han, Wenjie Deng, Fangchen Hu, Zhen Wang, Hongxi Zhou, He Yu, Jun Gou, Jun Wang","doi":"10.1038/s41377-025-01995-8","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of the information age, the demand for multi-dimensional light information detection has significantly increased. Traditional Fourier-transform infrared (FTIR) spectrometers and pooptical power, andlarimeters, due to their bulky structure, are no longer suitable for emerging fields such as medical diagnostics, secure communications, and autonomous driving. As a result, there is a pressing need to develop new miniaturized on-chip devices. The abundant two-dimensional (2D) materials, with their unique light-matter interactions, offer the potential to construct high-dimensional spatial mappings of incident light, paving the way for the development of novel ultra-compact multi-dimensional deep optical sensing technologies. Here, we review the interconnections of multi-dimensional information and their relationship with 2D materials. We then focus on recent advances in the development of novel dimensional detectors based on 2D materials, covering dimensions such as intensity, time, space, polarization, phase angle, and wavelength. Furthermore, we discuss cutting-edge technologies in multi-dimensional fusion detection and highlight future technological prospects, with a particular emphasis on on-chip integration and future development.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"14 1","pages":"362"},"PeriodicalIF":23.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-025-01995-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of the information age, the demand for multi-dimensional light information detection has significantly increased. Traditional Fourier-transform infrared (FTIR) spectrometers and pooptical power, andlarimeters, due to their bulky structure, are no longer suitable for emerging fields such as medical diagnostics, secure communications, and autonomous driving. As a result, there is a pressing need to develop new miniaturized on-chip devices. The abundant two-dimensional (2D) materials, with their unique light-matter interactions, offer the potential to construct high-dimensional spatial mappings of incident light, paving the way for the development of novel ultra-compact multi-dimensional deep optical sensing technologies. Here, we review the interconnections of multi-dimensional information and their relationship with 2D materials. We then focus on recent advances in the development of novel dimensional detectors based on 2D materials, covering dimensions such as intensity, time, space, polarization, phase angle, and wavelength. Furthermore, we discuss cutting-edge technologies in multi-dimensional fusion detection and highlight future technological prospects, with a particular emphasis on on-chip integration and future development.

基于二维材料的下一代多维光电探测器。
随着信息时代的快速推进,对多维光信息检测的需求显著增加。传统的傅里叶变换红外(FTIR)光谱仪、光能仪和红外光谱仪由于结构笨重,已不再适用于医疗诊断、安全通信、自动驾驶等新兴领域。因此,迫切需要开发新的小型化片上器件。丰富的二维(2D)材料以其独特的光-物质相互作用,为构建入射光的高维空间映射提供了潜力,为新型超紧凑多维深度光学传感技术的发展铺平了道路。在这里,我们回顾了多维信息的相互联系及其与二维材料的关系。然后,我们重点介绍了基于二维材料的新型维度探测器的最新进展,涵盖了强度、时间、空间、偏振、相位角和波长等维度。此外,我们讨论了多维融合检测的前沿技术,并强调了未来的技术前景,特别强调了片上集成和未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信