{"title":"Toxicological Assessment of Melamine-Functionalized Graphene Oxide and Carbon Nanotubes Using Zebrafish Models.","authors":"Aybek Yiğit, Serkan Yıldırım, Mine Köktürk, Dilek Nazli, Metin Kiliçlioğlu, Gunes Ozhan, Begum Celikkiran, Gonca Alak, Muhammed Atamanalp, Nurettin Menges","doi":"10.1002/jat.4953","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene oxide (GO) and carbon nanotube (CNT)-based nanomaterials have attracted significant interest in various industrial and biomedical applications due to their unique physicochemical properties; however, concerns about their potential toxicity, especially when modified with additives like melamine (M), remain largely unresolved. This study investigates the toxicological effects and underlying mechanisms of graphene oxide-melamine (GO-M) and carbon nanotube-melamine (CNT-M) nanoparticles in zebrafish (Danio rerio) embryos and larvae. To this end, developmental toxicity, phenotypic and behavioral changes, as well as histopathological and immunofluorescence alterations, were evaluated following acute exposure to GO-M and CNT-M nanoparticles at concentrations of 5, 10, and 20 mg/L. Results showed that both nanoparticles delayed larval hatching, particularly at higher concentrations (10 and 20 mg/L). Malformations were observed at 20 mg/L in the GO-M group and at 10 and 20 mg/L in the CNT-M group. Additionally, significant changes in larval length and eye area were observed at all concentrations for both nanoparticles. Behavioral assessments revealed that CNT-M exposure at 10 and 20 mg/L significantly impaired head sensorimotor reflexes, while all concentrations affected tail reflexes. In contrast, GO-M exposure did not significantly alter sensorimotor responses. These findings suggest differential toxic mechanisms and neurobehavioral effects of GO-M and CNT-M nanoparticles during early zebrafish development.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4953","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene oxide (GO) and carbon nanotube (CNT)-based nanomaterials have attracted significant interest in various industrial and biomedical applications due to their unique physicochemical properties; however, concerns about their potential toxicity, especially when modified with additives like melamine (M), remain largely unresolved. This study investigates the toxicological effects and underlying mechanisms of graphene oxide-melamine (GO-M) and carbon nanotube-melamine (CNT-M) nanoparticles in zebrafish (Danio rerio) embryos and larvae. To this end, developmental toxicity, phenotypic and behavioral changes, as well as histopathological and immunofluorescence alterations, were evaluated following acute exposure to GO-M and CNT-M nanoparticles at concentrations of 5, 10, and 20 mg/L. Results showed that both nanoparticles delayed larval hatching, particularly at higher concentrations (10 and 20 mg/L). Malformations were observed at 20 mg/L in the GO-M group and at 10 and 20 mg/L in the CNT-M group. Additionally, significant changes in larval length and eye area were observed at all concentrations for both nanoparticles. Behavioral assessments revealed that CNT-M exposure at 10 and 20 mg/L significantly impaired head sensorimotor reflexes, while all concentrations affected tail reflexes. In contrast, GO-M exposure did not significantly alter sensorimotor responses. These findings suggest differential toxic mechanisms and neurobehavioral effects of GO-M and CNT-M nanoparticles during early zebrafish development.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.