Temporal and protein-specific S-palmitoylation supports synaptic and neural network plasticity.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Agata Pytyś, Rabia Ijaz, Anna Buszka, Jacek Miłek, Izabela Figiel, Patrycja Wardaszka-Pianka, Matylda Roszkowska, Natalia Mierzwa, Adam Wojtas, Eli Kerstein, Remigiusz Serwa, Katarzyna Kalita, Rhonda Dzakpasu, Magdalena Dziembowska, Jakub Włodarczyk, Tomasz Wójtowicz
{"title":"Temporal and protein-specific S-palmitoylation supports synaptic and neural network plasticity.","authors":"Agata Pytyś, Rabia Ijaz, Anna Buszka, Jacek Miłek, Izabela Figiel, Patrycja Wardaszka-Pianka, Matylda Roszkowska, Natalia Mierzwa, Adam Wojtas, Eli Kerstein, Remigiusz Serwa, Katarzyna Kalita, Rhonda Dzakpasu, Magdalena Dziembowska, Jakub Włodarczyk, Tomasz Wójtowicz","doi":"10.1007/s00018-025-05893-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Synaptic plasticity, a fundamental process underlying learning and memory, depends on activity-driven changes in neural connectivity. S-palmitoylation, a reversible post-translational lipid modification, modulates synaptic protein function by influencing protein conformation, localization, trafficking, and molecular interactions. Despite its known significance in neuronal function, the temporal and protein-specific dynamics of S-palmitoylation during synaptic plasticity remain poorly understood.</p><p><strong>Methodology & principal findings: </strong>Using electrophysiological methods, molecular biology, proteomics, and imaging across various models (neuronal cultures, hippocampal slices, and synaptoneurosomes), we investigated S-palmitoylation during synaptic activity. Induction of long-term potentiation (LTP) resulted in protein-specific palmitoylation changes without altering global levels. In hippocampal slices, synaptophysin and PSD95 displayed distinct temporal patterns of palmitoylation, influenced by LTP. Deacylation experiments using N-(tert-butyl)hydroxylamine (NtBuHA) demonstrated that protein S-palmitoylation is crucial for organizing neuronal spiking and enabling LTP, particularly in the stratum radiatum. Mass spectrometry of synaptoneurosomes revealed a palmitoylome including over 700 proteins, with stimulation-induced predominant depalmitoylation. Differentially palmitoylated proteins were associated with synaptic vesicle cycling, cytoskeletal dynamics, and neurotransmitter release. What is interesting is that synaptoneurosomes contained active palmitoylation machinery, supporting rapid, target-specific responses to NMDA receptor activation.</p><p><strong>Conclusions: </strong>Temporal and protein-specific S-palmitoylation emerges as a vital mechanism for synaptic plasticity, contributing to neuronal network function and memory formation. These findings elucidate how palmitoylation acts as a dynamic regulator of synaptic activity and offer insights into its regulation. The study highlights the potential of targeting palmitoylation pathways for enhancing neuronal function.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"355"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05893-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Synaptic plasticity, a fundamental process underlying learning and memory, depends on activity-driven changes in neural connectivity. S-palmitoylation, a reversible post-translational lipid modification, modulates synaptic protein function by influencing protein conformation, localization, trafficking, and molecular interactions. Despite its known significance in neuronal function, the temporal and protein-specific dynamics of S-palmitoylation during synaptic plasticity remain poorly understood.

Methodology & principal findings: Using electrophysiological methods, molecular biology, proteomics, and imaging across various models (neuronal cultures, hippocampal slices, and synaptoneurosomes), we investigated S-palmitoylation during synaptic activity. Induction of long-term potentiation (LTP) resulted in protein-specific palmitoylation changes without altering global levels. In hippocampal slices, synaptophysin and PSD95 displayed distinct temporal patterns of palmitoylation, influenced by LTP. Deacylation experiments using N-(tert-butyl)hydroxylamine (NtBuHA) demonstrated that protein S-palmitoylation is crucial for organizing neuronal spiking and enabling LTP, particularly in the stratum radiatum. Mass spectrometry of synaptoneurosomes revealed a palmitoylome including over 700 proteins, with stimulation-induced predominant depalmitoylation. Differentially palmitoylated proteins were associated with synaptic vesicle cycling, cytoskeletal dynamics, and neurotransmitter release. What is interesting is that synaptoneurosomes contained active palmitoylation machinery, supporting rapid, target-specific responses to NMDA receptor activation.

Conclusions: Temporal and protein-specific S-palmitoylation emerges as a vital mechanism for synaptic plasticity, contributing to neuronal network function and memory formation. These findings elucidate how palmitoylation acts as a dynamic regulator of synaptic activity and offer insights into its regulation. The study highlights the potential of targeting palmitoylation pathways for enhancing neuronal function.

时间和蛋白质特异性s -棕榈酰化支持突触和神经网络的可塑性。
背景:突触可塑性是学习和记忆的基本过程,它依赖于活动驱动的神经连接变化。s -棕榈酰化是一种可逆的翻译后脂质修饰,通过影响蛋白质构象、定位、运输和分子相互作用来调节突触蛋白的功能。尽管已知s -棕榈酰化在神经元功能中的重要性,但在突触可塑性过程中s -棕榈酰化的时间和蛋白质特异性动力学仍然知之甚少。方法和主要发现:利用电生理学方法、分子生物学、蛋白质组学和各种模型(神经元培养、海马切片和突触eurosome)的成像,我们研究了突触活动期间的s -棕榈酰化。长期增强(LTP)的诱导导致蛋白特异性棕榈酰化的改变而不改变全局水平。在海马切片中,突触素和PSD95表现出不同的棕榈酰化时间模式,受LTP的影响。利用N-(叔丁基)羟胺(NtBuHA)进行的去酰化实验表明,蛋白质s -棕榈酰化对于组织神经元峰化和LTP的实现至关重要,特别是在辐射层中。质谱分析显示突触质粒含有超过700种蛋白,以刺激诱导的去棕榈酰化为主。不同棕榈酰化蛋白与突触囊泡循环、细胞骨架动力学和神经递质释放有关。有趣的是,突触体含有活跃的棕榈酰化机制,支持对NMDA受体激活的快速,目标特异性反应。结论:时间和蛋白质特异性s -棕榈酰化是突触可塑性的重要机制,有助于神经元网络功能和记忆形成。这些发现阐明了棕榈酰化如何作为突触活动的动态调节器,并提供了对其调节的见解。该研究强调了靶向棕榈酰化途径增强神经元功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信