N-glycans on SLC26A3 do not significantly alter plasma membrane or lipid raft trafficking, but appear to stabilize interdomain contacts to stimulate transport.
Sophie Achilles, Jan-Niklas Tomczak, Fabiane-Samira Baumann, Bassam G Haddad, Stefan Oswald, Jan-Philipp Machtens, Eric R Geertsma, Ilka Wittig, Georg Lamprecht
{"title":"N-glycans on SLC26A3 do not significantly alter plasma membrane or lipid raft trafficking, but appear to stabilize interdomain contacts to stimulate transport.","authors":"Sophie Achilles, Jan-Niklas Tomczak, Fabiane-Samira Baumann, Bassam G Haddad, Stefan Oswald, Jan-Philipp Machtens, Eric R Geertsma, Ilka Wittig, Georg Lamprecht","doi":"10.1152/ajpgi.00362.2024","DOIUrl":null,"url":null,"abstract":"<p><p>DRA (SLC26A3) is a major apical intestinal Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchanger, which is expressed in complex and hybrid N-glycosylated forms. While the importance of N-glycosylation is evident from the significantly reduced transport activity of non-N-glycosylated DRA constructs (DRA-N0), the underlying molecular mechanisms are controversial. Therefore, plasma membrane expression and lipid raft localization of glycosylation-deficient DRA-N0 were analyzed in HEK cells. The activity of DRA-N0 was reduced by 70% compared to the wildtype construct. Absolute expression of DRA-N0 was significantly reduced by approximately 57% in the cell lysate and by 34 and 45% in the plasma membrane and in plasma membrane-derived lipid rafts, respectively. These amounts are insufficient to account for the reduction in activity. Furthermore, the statistical analysis did not support a difference in the relative expression of DRA and DRA-N0 in the plasma membrane and in plasma membrane-derived lipid rafts, indicating that N-glycosylation does not affect transport activity through trafficking and localization in these cell compartments. To gain insight into potential intramolecular effects of N-glycosylation on DRA, its 3D-structure was predicted using AlphaFold3 with complex N-glycans covalently attached to N153, N161, and N164 in the transport domain. This revealed multiple inward- and outward-facing conformations of the protein. The number of interdomain contacts of the transport domain-bound glycans with the scaffold domain was higher in the inward-facing state. Because substrate release to the cytoplasm represents the rate-limiting step in many transport proteins, this suggests that in DRA glycans stabilize the inward-facing state facilitating anion transport.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00362.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DRA (SLC26A3) is a major apical intestinal Cl-/HCO3- exchanger, which is expressed in complex and hybrid N-glycosylated forms. While the importance of N-glycosylation is evident from the significantly reduced transport activity of non-N-glycosylated DRA constructs (DRA-N0), the underlying molecular mechanisms are controversial. Therefore, plasma membrane expression and lipid raft localization of glycosylation-deficient DRA-N0 were analyzed in HEK cells. The activity of DRA-N0 was reduced by 70% compared to the wildtype construct. Absolute expression of DRA-N0 was significantly reduced by approximately 57% in the cell lysate and by 34 and 45% in the plasma membrane and in plasma membrane-derived lipid rafts, respectively. These amounts are insufficient to account for the reduction in activity. Furthermore, the statistical analysis did not support a difference in the relative expression of DRA and DRA-N0 in the plasma membrane and in plasma membrane-derived lipid rafts, indicating that N-glycosylation does not affect transport activity through trafficking and localization in these cell compartments. To gain insight into potential intramolecular effects of N-glycosylation on DRA, its 3D-structure was predicted using AlphaFold3 with complex N-glycans covalently attached to N153, N161, and N164 in the transport domain. This revealed multiple inward- and outward-facing conformations of the protein. The number of interdomain contacts of the transport domain-bound glycans with the scaffold domain was higher in the inward-facing state. Because substrate release to the cytoplasm represents the rate-limiting step in many transport proteins, this suggests that in DRA glycans stabilize the inward-facing state facilitating anion transport.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.