Adrian Mosquera Orgueira, Marta Sonia Gonzalez Perez, Mattia D'Agostino, David A. Cairns, Alessandra Larocca, Juan José Lahuerta Palacios, Ruth Wester, Uta Bertsch, Anders Waage, Elena Zamagni, Carlos Pérez Míguez, Javier Alberto Rojas Martínez, Elias K. Mai, Davide Crucitti, Hans Salwender, Daniele Dall'Olio, Gastone Castellani, Manuel Piñeiro Fiel, Sara Bringhen, Sonja Zweegman, Michele Cavo, Sofía Iqbal, Jesus Maria Hernandez Rivas, Benedetto Bruno, Gordon Cook, Martin F. Kaiser, Hartmut Goldschmidt, Niels W. C. J. Van De Donk, Graham Jackson, Jesús F. San-Miguel, Mario Boccadoro, Maria-Victoria Mateos, Pieter Sonneveld
{"title":"Machine learning risk stratification strategy for multiple myeloma: Insights from the EMN–HARMONY Alliance platform","authors":"Adrian Mosquera Orgueira, Marta Sonia Gonzalez Perez, Mattia D'Agostino, David A. Cairns, Alessandra Larocca, Juan José Lahuerta Palacios, Ruth Wester, Uta Bertsch, Anders Waage, Elena Zamagni, Carlos Pérez Míguez, Javier Alberto Rojas Martínez, Elias K. Mai, Davide Crucitti, Hans Salwender, Daniele Dall'Olio, Gastone Castellani, Manuel Piñeiro Fiel, Sara Bringhen, Sonja Zweegman, Michele Cavo, Sofía Iqbal, Jesus Maria Hernandez Rivas, Benedetto Bruno, Gordon Cook, Martin F. Kaiser, Hartmut Goldschmidt, Niels W. C. J. Van De Donk, Graham Jackson, Jesús F. San-Miguel, Mario Boccadoro, Maria-Victoria Mateos, Pieter Sonneveld","doi":"10.1002/hem3.70228","DOIUrl":null,"url":null,"abstract":"<p>Traditional risk stratification in multiple myeloma (MM) relies on clinical and cytogenetic parameters but has limited predictive accuracy. Machine learning (ML) offers a novel approach by leveraging large datasets and complex variable interactions. This study aimed to develop and validate novel ML-driven prognostic scores for newly diagnosed MM (NDMM), with the goal of improving upon existing ones. To this end, we analyzed data from the EMN–HARMONY MM cohort, comprising 14,345 patients, including 10,843 NDMM patients enrolled across 16 clinical trials. Three ML models were developed: (1) a comprehensive model incorporating 20 variables, (2) a reduced model including six key variables (age, hemoglobin, β2-microglobulin, albumin, 1q gain, and 17p deletion), and (3) a cytogenetics-free model. All models were internally validated using out-of-bag cross-validation and externally validated with data from the Myeloma XI trial. Model performance was evaluated using the concordance index (C-index) and time-dependent area under the receiver operating characteristic curve (ROC-AUC). The comprehensive model achieved C-index values of 0.666 (training) and 0.667 (test) for overall survival (OS) and 0.620/0.627 for progression-free survival (PFS). The reduced model maintained accuracy (OS: 0.658/0.657; PFS: 0.608/0.614). The cytogenetics-free model showed C-index values of 0.636/0.643 for OS and 0.600/0.610 for PFS. Incorporating treatment type and best response to first-line treatment further improved performance. The new prognostic models improved over the International Staging System (ISS), Revised International Staging System (R-ISS), and Second Revision of the International Staging System (R2-ISS) and were reproducible in real-world and relapsed/refractory MM, including daratumumab-treated patients. This ML-based risk stratification strategy provides individualized risk predictions, surpassing traditional group-based methods and demonstrating broad applicability across patient subgroups. An online calculator is available at https://taxonomy.harmony-platform.eu/riskcalculator/.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 10","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional risk stratification in multiple myeloma (MM) relies on clinical and cytogenetic parameters but has limited predictive accuracy. Machine learning (ML) offers a novel approach by leveraging large datasets and complex variable interactions. This study aimed to develop and validate novel ML-driven prognostic scores for newly diagnosed MM (NDMM), with the goal of improving upon existing ones. To this end, we analyzed data from the EMN–HARMONY MM cohort, comprising 14,345 patients, including 10,843 NDMM patients enrolled across 16 clinical trials. Three ML models were developed: (1) a comprehensive model incorporating 20 variables, (2) a reduced model including six key variables (age, hemoglobin, β2-microglobulin, albumin, 1q gain, and 17p deletion), and (3) a cytogenetics-free model. All models were internally validated using out-of-bag cross-validation and externally validated with data from the Myeloma XI trial. Model performance was evaluated using the concordance index (C-index) and time-dependent area under the receiver operating characteristic curve (ROC-AUC). The comprehensive model achieved C-index values of 0.666 (training) and 0.667 (test) for overall survival (OS) and 0.620/0.627 for progression-free survival (PFS). The reduced model maintained accuracy (OS: 0.658/0.657; PFS: 0.608/0.614). The cytogenetics-free model showed C-index values of 0.636/0.643 for OS and 0.600/0.610 for PFS. Incorporating treatment type and best response to first-line treatment further improved performance. The new prognostic models improved over the International Staging System (ISS), Revised International Staging System (R-ISS), and Second Revision of the International Staging System (R2-ISS) and were reproducible in real-world and relapsed/refractory MM, including daratumumab-treated patients. This ML-based risk stratification strategy provides individualized risk predictions, surpassing traditional group-based methods and demonstrating broad applicability across patient subgroups. An online calculator is available at https://taxonomy.harmony-platform.eu/riskcalculator/.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.