Machine learning risk stratification strategy for multiple myeloma: Insights from the EMN–HARMONY Alliance platform

IF 14.6 2区 医学 Q1 HEMATOLOGY
HemaSphere Pub Date : 2025-10-09 DOI:10.1002/hem3.70228
Adrian Mosquera Orgueira, Marta Sonia Gonzalez Perez, Mattia D'Agostino, David A. Cairns, Alessandra Larocca, Juan José Lahuerta Palacios, Ruth Wester, Uta Bertsch, Anders Waage, Elena Zamagni, Carlos Pérez Míguez, Javier Alberto Rojas Martínez, Elias K. Mai, Davide Crucitti, Hans Salwender, Daniele Dall'Olio, Gastone Castellani, Manuel Piñeiro Fiel, Sara Bringhen, Sonja Zweegman, Michele Cavo, Sofía Iqbal, Jesus Maria Hernandez Rivas, Benedetto Bruno, Gordon Cook, Martin F. Kaiser, Hartmut Goldschmidt, Niels W. C. J. Van De Donk, Graham Jackson, Jesús F. San-Miguel, Mario Boccadoro, Maria-Victoria Mateos, Pieter Sonneveld
{"title":"Machine learning risk stratification strategy for multiple myeloma: Insights from the EMN–HARMONY Alliance platform","authors":"Adrian Mosquera Orgueira,&nbsp;Marta Sonia Gonzalez Perez,&nbsp;Mattia D'Agostino,&nbsp;David A. Cairns,&nbsp;Alessandra Larocca,&nbsp;Juan José Lahuerta Palacios,&nbsp;Ruth Wester,&nbsp;Uta Bertsch,&nbsp;Anders Waage,&nbsp;Elena Zamagni,&nbsp;Carlos Pérez Míguez,&nbsp;Javier Alberto Rojas Martínez,&nbsp;Elias K. Mai,&nbsp;Davide Crucitti,&nbsp;Hans Salwender,&nbsp;Daniele Dall'Olio,&nbsp;Gastone Castellani,&nbsp;Manuel Piñeiro Fiel,&nbsp;Sara Bringhen,&nbsp;Sonja Zweegman,&nbsp;Michele Cavo,&nbsp;Sofía Iqbal,&nbsp;Jesus Maria Hernandez Rivas,&nbsp;Benedetto Bruno,&nbsp;Gordon Cook,&nbsp;Martin F. Kaiser,&nbsp;Hartmut Goldschmidt,&nbsp;Niels W. C. J. Van De Donk,&nbsp;Graham Jackson,&nbsp;Jesús F. San-Miguel,&nbsp;Mario Boccadoro,&nbsp;Maria-Victoria Mateos,&nbsp;Pieter Sonneveld","doi":"10.1002/hem3.70228","DOIUrl":null,"url":null,"abstract":"<p>Traditional risk stratification in multiple myeloma (MM) relies on clinical and cytogenetic parameters but has limited predictive accuracy. Machine learning (ML) offers a novel approach by leveraging large datasets and complex variable interactions. This study aimed to develop and validate novel ML-driven prognostic scores for newly diagnosed MM (NDMM), with the goal of improving upon existing ones. To this end, we analyzed data from the EMN–HARMONY MM cohort, comprising 14,345 patients, including 10,843 NDMM patients enrolled across 16 clinical trials. Three ML models were developed: (1) a comprehensive model incorporating 20 variables, (2) a reduced model including six key variables (age, hemoglobin, β2-microglobulin, albumin, 1q gain, and 17p deletion), and (3) a cytogenetics-free model. All models were internally validated using out-of-bag cross-validation and externally validated with data from the Myeloma XI trial. Model performance was evaluated using the concordance index (C-index) and time-dependent area under the receiver operating characteristic curve (ROC-AUC). The comprehensive model achieved C-index values of 0.666 (training) and 0.667 (test) for overall survival (OS) and 0.620/0.627 for progression-free survival (PFS). The reduced model maintained accuracy (OS: 0.658/0.657; PFS: 0.608/0.614). The cytogenetics-free model showed C-index values of 0.636/0.643 for OS and 0.600/0.610 for PFS. Incorporating treatment type and best response to first-line treatment further improved performance. The new prognostic models improved over the International Staging System (ISS), Revised International Staging System (R-ISS), and Second Revision of the International Staging System (R2-ISS) and were reproducible in real-world and relapsed/refractory MM, including daratumumab-treated patients. This ML-based risk stratification strategy provides individualized risk predictions, surpassing traditional group-based methods and demonstrating broad applicability across patient subgroups. An online calculator is available at https://taxonomy.harmony-platform.eu/riskcalculator/.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 10","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional risk stratification in multiple myeloma (MM) relies on clinical and cytogenetic parameters but has limited predictive accuracy. Machine learning (ML) offers a novel approach by leveraging large datasets and complex variable interactions. This study aimed to develop and validate novel ML-driven prognostic scores for newly diagnosed MM (NDMM), with the goal of improving upon existing ones. To this end, we analyzed data from the EMN–HARMONY MM cohort, comprising 14,345 patients, including 10,843 NDMM patients enrolled across 16 clinical trials. Three ML models were developed: (1) a comprehensive model incorporating 20 variables, (2) a reduced model including six key variables (age, hemoglobin, β2-microglobulin, albumin, 1q gain, and 17p deletion), and (3) a cytogenetics-free model. All models were internally validated using out-of-bag cross-validation and externally validated with data from the Myeloma XI trial. Model performance was evaluated using the concordance index (C-index) and time-dependent area under the receiver operating characteristic curve (ROC-AUC). The comprehensive model achieved C-index values of 0.666 (training) and 0.667 (test) for overall survival (OS) and 0.620/0.627 for progression-free survival (PFS). The reduced model maintained accuracy (OS: 0.658/0.657; PFS: 0.608/0.614). The cytogenetics-free model showed C-index values of 0.636/0.643 for OS and 0.600/0.610 for PFS. Incorporating treatment type and best response to first-line treatment further improved performance. The new prognostic models improved over the International Staging System (ISS), Revised International Staging System (R-ISS), and Second Revision of the International Staging System (R2-ISS) and were reproducible in real-world and relapsed/refractory MM, including daratumumab-treated patients. This ML-based risk stratification strategy provides individualized risk predictions, surpassing traditional group-based methods and demonstrating broad applicability across patient subgroups. An online calculator is available at https://taxonomy.harmony-platform.eu/riskcalculator/.

Abstract Image

多发性骨髓瘤的机器学习风险分层策略:来自EMN-HARMONY联盟平台的见解
多发性骨髓瘤(MM)的传统风险分层依赖于临床和细胞遗传学参数,但预测准确性有限。机器学习(ML)通过利用大型数据集和复杂的变量交互提供了一种新颖的方法。本研究旨在开发和验证新诊断MM (NDMM)的新型ml驱动预后评分,目的是改进现有评分。为此,我们分析了EMN-HARMONY MM队列的数据,包括14,345例患者,其中10,843例NDMM患者参加了16项临床试验。建立了3种ML模型:(1)包含20个变量的综合模型,(2)包含6个关键变量(年龄、血红蛋白、β2-微球蛋白、白蛋白、1q增益和17p缺失)的简化模型,以及(3)无细胞遗传学模型。所有模型均采用袋外交叉验证进行内部验证,并使用骨髓瘤XI试验的数据进行外部验证。使用一致性指数(C-index)和接受者工作特征曲线下的时间依赖面积(ROC-AUC)来评估模型的性能。综合模型总生存期(OS)的c指数值为0.666(训练)和0.667(试验),无进展生存期(PFS)的c指数值为0.620/0.627。简化后的模型保持了精度(OS: 0.658/0.657; PFS: 0.608/0.614)。无细胞遗传学模型显示,OS的c指数为0.636/0.643,PFS的c指数为0.600/0.610。结合治疗类型和一线治疗的最佳反应,进一步提高了疗效。新的预后模型在国际分期系统(ISS)、修订后的国际分期系统(R-ISS)和第二次修订的国际分期系统(R2-ISS)的基础上得到了改进,并且在现实世界和复发/难治性MM(包括达拉图单抗治疗的患者)中具有可重复性。这种基于ml的风险分层策略提供了个性化的风险预测,超越了传统的基于组的方法,并在患者亚组中表现出广泛的适用性。在线计算器可在https://taxonomy.harmony-platform.eu/riskcalculator/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HemaSphere
HemaSphere Medicine-Hematology
CiteScore
6.10
自引率
4.50%
发文量
2776
审稿时长
7 weeks
期刊介绍: HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology. In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care. Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信