Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells

IF 12
Tao Dong, Chenxu Shen, Boyang Yu, Shengyang Zhao, Haoyu Wu, Chenyuan Ding, Binkai Shi, Ziyu Cai, Wenzheng Hu, Biyun Shi, Feng Ye, Qiufeng Ye, Zebo Fang
{"title":"Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells","authors":"Tao Dong,&nbsp;Chenxu Shen,&nbsp;Boyang Yu,&nbsp;Shengyang Zhao,&nbsp;Haoyu Wu,&nbsp;Chenyuan Ding,&nbsp;Binkai Shi,&nbsp;Ziyu Cai,&nbsp;Wenzheng Hu,&nbsp;Biyun Shi,&nbsp;Feng Ye,&nbsp;Qiufeng Ye,&nbsp;Zebo Fang","doi":"10.1002/cnl2.70061","DOIUrl":null,"url":null,"abstract":"<p>As an intermediate composition between CsPbI<sub>2</sub>Br and CsPbIBr<sub>2</sub>, the inorganic perovskite material CsPbI<sub>1.5</sub>Br<sub>1.5</sub> is expected to exhibit both high efficiency and enhanced stability, attracting significant attention. However, as a Br-rich perovskite, CsPbI<sub>1.5</sub>Br<sub>1.5</sub> suffers from poor film quality, primarily due to the substantial disparity in solvent evaporation rates and nucleation growth kinetics of the precursor films. This leads to severe non-radiative recombination, closely related to the larger open-circuit voltage loss (<i>V</i><sub>OC</sub> loss) and lower efficiencies compared to mainstream inorganic perovskites (e.g., CsPbI<sub>3</sub> and CsPbI<sub>2</sub>Br). To address these issues, we employed a Sequential Extraction Vacuum Method (SEVM), which integrates antisolvent extraction with vacuum treatment, to minimize solvent residues in perovskite films. This approach promotes grain densification, mitigates pinhole formation, and enhances film coverage, thereby significantly inhibiting non-radiative recombination. Following SEVM treatment, the champion device achieved a power conversion efficiency (PCE) of 14.29% and a <i>V</i><sub>OC</sub> of 1.336 V, representing the highest PCE and smallest V<sub>OC</sub> loss for ultra-wide bandgap (&gt; 1.95 eV) inorganic perovskite solar cells (PSCs). Furthermore, the SEVM-based PSCs retained 90% of their initial PCE after 500 h of unencapsulated storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an intermediate composition between CsPbI2Br and CsPbIBr2, the inorganic perovskite material CsPbI1.5Br1.5 is expected to exhibit both high efficiency and enhanced stability, attracting significant attention. However, as a Br-rich perovskite, CsPbI1.5Br1.5 suffers from poor film quality, primarily due to the substantial disparity in solvent evaporation rates and nucleation growth kinetics of the precursor films. This leads to severe non-radiative recombination, closely related to the larger open-circuit voltage loss (VOC loss) and lower efficiencies compared to mainstream inorganic perovskites (e.g., CsPbI3 and CsPbI2Br). To address these issues, we employed a Sequential Extraction Vacuum Method (SEVM), which integrates antisolvent extraction with vacuum treatment, to minimize solvent residues in perovskite films. This approach promotes grain densification, mitigates pinhole formation, and enhances film coverage, thereby significantly inhibiting non-radiative recombination. Following SEVM treatment, the champion device achieved a power conversion efficiency (PCE) of 14.29% and a VOC of 1.336 V, representing the highest PCE and smallest VOC loss for ultra-wide bandgap (> 1.95 eV) inorganic perovskite solar cells (PSCs). Furthermore, the SEVM-based PSCs retained 90% of their initial PCE after 500 h of unencapsulated storage.

Abstract Image

高效超宽带隙太阳能电池CsPbI1.5Br1.5钙钛矿膜中溶剂残留量最小化
无机钙钛矿材料cspbi1.5 - br1.5作为CsPbI2Br和CsPbIBr2之间的中间组合物,有望表现出高效率和增强的稳定性,备受关注。然而,作为一种富br的钙钛矿,cspbi1.5 . br1.5的成膜质量较差,主要是由于溶剂蒸发速率和前驱体膜的成核生长动力学存在很大差异。这导致了严重的非辐射复合,与主流无机钙钛矿(如CsPbI3和CsPbI2Br)相比,开路电压损失(VOC损失)更大,效率更低密切相关。为了解决这些问题,我们采用了顺序萃取真空法(SEVM),将反溶剂萃取与真空处理相结合,以最大限度地减少钙钛矿膜中的溶剂残留。这种方法促进了晶粒致密化,减轻了针孔的形成,提高了薄膜的覆盖率,从而显著抑制了非辐射复合。经过SEVM处理后,冠军器件的功率转换效率(PCE)为14.29%,VOC为1.336 V,代表了超宽带隙(1.95 eV)无机钙钛矿太阳能电池(PSCs)的最高PCE和最小VOC损失。此外,在未封装存储500小时后,基于sevm的PSCs保留了初始PCE的90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信