User Intent Understanding and Service Classification in English Tutoring Systems via Large Language Models Over Wireless Communication Networks

IF 0.5 Q4 TELECOMMUNICATIONS
Hua Lian
{"title":"User Intent Understanding and Service Classification in English Tutoring Systems via Large Language Models Over Wireless Communication Networks","authors":"Hua Lian","doi":"10.1002/itl2.70154","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes a novel hybrid framework that combines lightweight edge-side intent sketching with cloud-based large language model (LLM) reasoning, called Wireless LLM-Enhanced Intent-Service Parsing Framework (WISE). Specifically, WISE integrates four components: Local Intent Sketching Module (LISM), Semantic Feature Compression and Transmission (SFCT) unit, Prompt-Aware LLM Service Classification Engine (LSCE), and Semantic Alignment and Service Prediction module (SASP). This architecture enables efficient semantic understanding with minimal transmission overhead. Experimental results on a curated English tutoring intent-service dataset demonstrate that WISE achieves superior accuracy (88.9% intent classification accuracy and 86.5% F1 score), while reducing communication costs by over 80% compared to cloud-only LLM solutions. Additional ablation studies and training analyses confirm the effectiveness and stability of the proposed design. WISE offers a scalable and real-time solution for intelligent language tutoring in wireless edge environments.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel hybrid framework that combines lightweight edge-side intent sketching with cloud-based large language model (LLM) reasoning, called Wireless LLM-Enhanced Intent-Service Parsing Framework (WISE). Specifically, WISE integrates four components: Local Intent Sketching Module (LISM), Semantic Feature Compression and Transmission (SFCT) unit, Prompt-Aware LLM Service Classification Engine (LSCE), and Semantic Alignment and Service Prediction module (SASP). This architecture enables efficient semantic understanding with minimal transmission overhead. Experimental results on a curated English tutoring intent-service dataset demonstrate that WISE achieves superior accuracy (88.9% intent classification accuracy and 86.5% F1 score), while reducing communication costs by over 80% compared to cloud-only LLM solutions. Additional ablation studies and training analyses confirm the effectiveness and stability of the proposed design. WISE offers a scalable and real-time solution for intelligent language tutoring in wireless edge environments.

Abstract Image

基于无线通信网络的大型语言模型英语辅导系统的用户意图理解与服务分类
本文提出了一种新的混合框架,将轻量级边缘意图草图与基于云的大语言模型(LLM)推理相结合,称为无线LLM增强意图服务解析框架(WISE)。WISE集成了四个组件:本地意图草图模块(LISM)、语义特征压缩与传输(SFCT)单元、即时感知LLM服务分类引擎(LSCE)和语义对齐与服务预测模块(SASP)。这种体系结构能够以最小的传输开销实现高效的语义理解。在一个精心策划的英语辅导意向服务数据集上的实验结果表明,与纯云LLM解决方案相比,WISE实现了更高的准确率(88.9%的意向分类准确率和86.5%的F1分数),同时降低了80%以上的沟通成本。额外的消融研究和训练分析证实了所提出设计的有效性和稳定性。WISE为无线边缘环境中的智能语言辅导提供了可扩展的实时解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信