Operando tracking of photothermal effects on CO2-to-methanol pathways over industrial Cu–Zn catalysts

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xuanyu Yue and Ke Wang
{"title":"Operando tracking of photothermal effects on CO2-to-methanol pathways over industrial Cu–Zn catalysts","authors":"Xuanyu Yue and Ke Wang","doi":"10.1039/D5CY00817D","DOIUrl":null,"url":null,"abstract":"<p >The introduction of external field assistance in CO<small><sub>2</sub></small> hydrogenation systems presents an effective approach to achieving superior methanol synthesis performance. However, there is a lack of adequate research on how light modulates or alters the reaction process at different temperatures and pressures. Here, we demonstrate that light irradiation enables remarkable activity enhancements, especially at lower pressures, in conventional Cu/ZnO/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> (CZA) catalytic systems through strategically designed operando characterization studies. Systematic investigation of pressure-light-temperature coupling effects reveals that photon energy input significantly elevates methanol productivity, with particularly pronounced enhancements (17–100% activity increase <em>vs.</em> thermal catalysis) observed under reduced pressure conditions. Notably, comparable activity levels emerge between 2 MPa and 3 MPa systems under photothermal operation at equivalent temperatures. Mechanistic analysis uncovers that localized surface plasmon resonance (LSPR) excitation in Cu nanostructures drives dual activation pathways: (1) low-barrier CO<small><sub>2</sub></small> activation through charge transfer mechanisms and (2) enhanced H<small><sub>2</sub></small> dissociation kinetics. Critical to the performance enhancement are the light-induced dynamic shifts in Cu oxidation states and the synergistic coordination between Cu<small><sup>0</sup></small>–CO and dissociated hydrogen species. These findings establish photonic field modulation as a powerful strategy for developing energy-efficient catalytic systems that operate under mild conditions.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 20","pages":" 6149-6160"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00817d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of external field assistance in CO2 hydrogenation systems presents an effective approach to achieving superior methanol synthesis performance. However, there is a lack of adequate research on how light modulates or alters the reaction process at different temperatures and pressures. Here, we demonstrate that light irradiation enables remarkable activity enhancements, especially at lower pressures, in conventional Cu/ZnO/Al2O3 (CZA) catalytic systems through strategically designed operando characterization studies. Systematic investigation of pressure-light-temperature coupling effects reveals that photon energy input significantly elevates methanol productivity, with particularly pronounced enhancements (17–100% activity increase vs. thermal catalysis) observed under reduced pressure conditions. Notably, comparable activity levels emerge between 2 MPa and 3 MPa systems under photothermal operation at equivalent temperatures. Mechanistic analysis uncovers that localized surface plasmon resonance (LSPR) excitation in Cu nanostructures drives dual activation pathways: (1) low-barrier CO2 activation through charge transfer mechanisms and (2) enhanced H2 dissociation kinetics. Critical to the performance enhancement are the light-induced dynamic shifts in Cu oxidation states and the synergistic coordination between Cu0–CO and dissociated hydrogen species. These findings establish photonic field modulation as a powerful strategy for developing energy-efficient catalytic systems that operate under mild conditions.

Abstract Image

工业Cu-Zn催化剂上co2制甲醇的光热效应的操作跟踪
在二氧化碳加氢系统引入外部现场援助提出了一种有效的方法,以实现优越的甲醇合成性能。然而,在不同的温度和压力下,光如何调节或改变反应过程,缺乏足够的研究。在这里,我们通过策略设计的operando表征研究证明,光照射可以显著增强传统Cu/ZnO/Al2O3 (CZA)催化体系的活性,特别是在较低压力下。对压力-光-温耦合效应的系统研究表明,光子能量输入显著提高了甲醇的生产率,在减压条件下观察到特别明显的增强(与热催化相比,活性增加17-100%)。值得注意的是,在同等温度下光热操作下,在2 MPa和3 MPa系统之间出现了可比的活性水平。机制分析表明,Cu纳米结构中的局部表面等离子体共振(LSPR)激发驱动双重激活途径:(1)通过电荷转移机制激活低势垒CO2;(2)增强H2解离动力学。光诱导Cu氧化态的动态变化以及Cu - co与解离氢之间的协同配合是提高性能的关键。这些发现确立了光子场调制作为开发在温和条件下运行的节能催化系统的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信