Entropy engineering enables synthesis of a perovskite-derived Ni–Co–Cu/La2O3–OV catalyst for efficient and stable CO2-to-CO conversion

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Junxia Wu, Qi Wang, Hongwei Wang, Runran Wang, Bin Li and Hong Wang
{"title":"Entropy engineering enables synthesis of a perovskite-derived Ni–Co–Cu/La2O3–OV catalyst for efficient and stable CO2-to-CO conversion","authors":"Junxia Wu, Qi Wang, Hongwei Wang, Runran Wang, Bin Li and Hong Wang","doi":"10.1039/D5CY00880H","DOIUrl":null,"url":null,"abstract":"<p >The challenge in designing efficient reverse water–gas shift (RWGS) catalysts necessitates high CO selectivity and CO<small><sub>2</sub></small> conversion while suppressing CH<small><sub>4</sub></small> formation and ensuring thermal stability. In this study, entropy engineering was proposed to successfully synthesize the medium entropy encapsulated crystalline oxide catalyst La<small><sub>4</sub></small>(NiCoAlCu)O<small><sub><em>x</em></sub></small> (MEO). The entropy-driven delayed diffusion promotes the formation of the Ni–Co–Cu alloy phase during the reduction process, while the simultaneous formation of the La<small><sub>2</sub></small>O<small><sub>3</sub></small> support improves the dispersion of the active metal. It combined with the physical confinement effect of the hierarchical porosity structure, effectively stabilizing the Ni/Co/Cu nanoparticles against high temperature agglomeration. Entropy-induced lattice distortion generated abundant oxygen vacancies, providing strong adsorption sites for CO<small><sub>2</sub></small> and promoting H<small><sub>2</sub></small> dissociation into active H* species. These synergistic effects created a tripartite active configuration (“alloy–oxide interface–oxygen vacancies”) within MEO, enabling an “efficient adsorption–activation–conversion” pathway. Consequently, MEO achieved outstanding catalytic performance and high thermal stability at 550 °C, maintaining ≥95% CO selectivity over 1000 hours. In contrast, enthalpy-dominated La<small><sub>5</sub></small>(NiCoAlCuZr)O<small><sub><em>x</em></sub></small> (Zr-MEO) suffered from significantly reduced activity due to multiphase segregation and oxygen vacancy scarcity. This work elucidates entropy engineering's pivotal role in stabilizing the catalyst structure and modulating interfacial activity, proposing an “entropy-driven structural engineering” strategy for designing durable, highly active, and selective high-temperature CO<small><sub>2</sub></small> hydrogenation catalysts.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 20","pages":" 6035-6048"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00880h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge in designing efficient reverse water–gas shift (RWGS) catalysts necessitates high CO selectivity and CO2 conversion while suppressing CH4 formation and ensuring thermal stability. In this study, entropy engineering was proposed to successfully synthesize the medium entropy encapsulated crystalline oxide catalyst La4(NiCoAlCu)Ox (MEO). The entropy-driven delayed diffusion promotes the formation of the Ni–Co–Cu alloy phase during the reduction process, while the simultaneous formation of the La2O3 support improves the dispersion of the active metal. It combined with the physical confinement effect of the hierarchical porosity structure, effectively stabilizing the Ni/Co/Cu nanoparticles against high temperature agglomeration. Entropy-induced lattice distortion generated abundant oxygen vacancies, providing strong adsorption sites for CO2 and promoting H2 dissociation into active H* species. These synergistic effects created a tripartite active configuration (“alloy–oxide interface–oxygen vacancies”) within MEO, enabling an “efficient adsorption–activation–conversion” pathway. Consequently, MEO achieved outstanding catalytic performance and high thermal stability at 550 °C, maintaining ≥95% CO selectivity over 1000 hours. In contrast, enthalpy-dominated La5(NiCoAlCuZr)Ox (Zr-MEO) suffered from significantly reduced activity due to multiphase segregation and oxygen vacancy scarcity. This work elucidates entropy engineering's pivotal role in stabilizing the catalyst structure and modulating interfacial activity, proposing an “entropy-driven structural engineering” strategy for designing durable, highly active, and selective high-temperature CO2 hydrogenation catalysts.

Abstract Image

熵工程可以合成一种钙钛矿衍生的Ni-Co-Cu / La2O3-OV催化剂,用于高效稳定的co2 - co转化
设计高效的逆水气转换(RWGS)催化剂面临的挑战是,在抑制CH4生成和确保热稳定性的同时,需要高CO选择性和CO2转化率。本研究采用熵工程方法成功合成了介质熵包封型晶体氧化物催化剂La4(NiCoAlCu)Ox (MEO)。在还原过程中,熵驱动的延迟扩散促进了Ni-Co-Cu合金相的形成,而La2O3载体的同时形成促进了活性金属的分散。结合分层孔隙结构的物理约束效应,有效地稳定了Ni/Co/Cu纳米颗粒的高温团聚。熵诱导的晶格畸变产生了丰富的氧空位,为CO2提供了强大的吸附位点,并促进H2解离成活性H*物质。这些协同效应在MEO中形成了三方活性结构(“合金-氧化物界面-氧空位”),实现了“有效的吸附-活化-转化”途径。因此,MEO在550°C下具有优异的催化性能和高热稳定性,在1000小时内保持≥95%的CO选择性。相反,焓为主的La5(NiCoAlCuZr)Ox (Zr-MEO)由于多相偏析和氧空位稀缺,活性明显降低。这项工作阐明了熵工程在稳定催化剂结构和调节界面活性方面的关键作用,提出了一种“熵驱动的结构工程”策略,用于设计耐用、高活性和选择性高温CO2加氢催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信