STKG-TP: Depression recognition via spatial-temporal knowledge graph and trajectory-semantic cross-fusion with EEG signals

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Huang , Huijie Liu , Jiannong Cao , Yan Zhang , Chao Yang , Jianhua Song , Zhifei Li , Xiaoyong Yan
{"title":"STKG-TP: Depression recognition via spatial-temporal knowledge graph and trajectory-semantic cross-fusion with EEG signals","authors":"Chen Huang ,&nbsp;Huijie Liu ,&nbsp;Jiannong Cao ,&nbsp;Yan Zhang ,&nbsp;Chao Yang ,&nbsp;Jianhua Song ,&nbsp;Zhifei Li ,&nbsp;Xiaoyong Yan","doi":"10.1016/j.eswa.2025.129744","DOIUrl":null,"url":null,"abstract":"<div><div>EEG signals carry important neurocognitive information for depression recognition. However, existing EEG-based depression recognition research faces challenges in addressing semantic interpretability and improving model robustness. Consequently, in this paper, to overcome these challenges, we propose STKG-TP, a novel depression recognition model that integrates Spatiotemporal Knowledge Graphs (STKG) with trajectory-semantic cross-fusion. Specifically, we design an STKG module to learn brain region activation patterns associated with different depressive states and construct a spatiotemporal knowledge graph to enhance the model’s generalization and robustness. In addition, we introduce a Trajectory Prompting module that transforms EEG signal trajectories into a structured semantic library, enabling neurocognitive interpretability at the semantic level. Extensive experimental evaluations on three publicly available EEG datasets demonstrate the superior performance of STKG-TP in addressing these challenges. Compared with existing state-of-the-art depression recognition models, STKG-TP improves Accuracy by 1.13 %, 0.61 %, and 1.29 %, and Kappa score by 3.14 %, 1.88 %, and 2.75 %, respectively. The STKG-TP code is publicly available at: <span><span>https://github.com/xuxuanya-love/STKG-TP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"299 ","pages":"Article 129744"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425033597","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

EEG signals carry important neurocognitive information for depression recognition. However, existing EEG-based depression recognition research faces challenges in addressing semantic interpretability and improving model robustness. Consequently, in this paper, to overcome these challenges, we propose STKG-TP, a novel depression recognition model that integrates Spatiotemporal Knowledge Graphs (STKG) with trajectory-semantic cross-fusion. Specifically, we design an STKG module to learn brain region activation patterns associated with different depressive states and construct a spatiotemporal knowledge graph to enhance the model’s generalization and robustness. In addition, we introduce a Trajectory Prompting module that transforms EEG signal trajectories into a structured semantic library, enabling neurocognitive interpretability at the semantic level. Extensive experimental evaluations on three publicly available EEG datasets demonstrate the superior performance of STKG-TP in addressing these challenges. Compared with existing state-of-the-art depression recognition models, STKG-TP improves Accuracy by 1.13 %, 0.61 %, and 1.29 %, and Kappa score by 3.14 %, 1.88 %, and 2.75 %, respectively. The STKG-TP code is publicly available at: https://github.com/xuxuanya-love/STKG-TP.
基于时空知识图谱和脑电信号轨迹语义交叉融合的抑郁症识别
脑电图信号对抑郁症的识别具有重要的神经认知信息。然而,现有的基于脑电图的抑郁症识别研究在解决语义可解释性和提高模型鲁棒性方面面临挑战。因此,在本文中,为了克服这些挑战,我们提出了一种新的抑郁症识别模型STKG- tp,该模型将时空知识图(STKG)与轨迹语义交叉融合相结合。具体来说,我们设计了一个STKG模块来学习与不同抑郁状态相关的大脑区域激活模式,并构建了一个时空知识图来增强模型的泛化和鲁棒性。此外,我们还引入了一个轨迹提示模块,该模块将EEG信号轨迹转换为结构化的语义库,从而实现语义层面的神经认知可解释性。对三个公开可用的脑电图数据集进行了广泛的实验评估,证明了STKG-TP在解决这些挑战方面的卓越性能。与现有的最先进的抑郁症识别模型相比,STKG-TP的准确率分别提高了1.13%、0.61%和1.29%,Kappa评分分别提高了3.14%、1.88%和2.75%。STKG-TP代码可在https://github.com/xuxuanya-love/STKG-TP公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信