FaceDisentGAN: Disentangled facial editing with targeted semantic alignment

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meng Xu , Prince Hamandawana , Xiaohan Ma , Zekang Chen , Rize Jin , Tae-Sun Chung
{"title":"FaceDisentGAN: Disentangled facial editing with targeted semantic alignment","authors":"Meng Xu ,&nbsp;Prince Hamandawana ,&nbsp;Xiaohan Ma ,&nbsp;Zekang Chen ,&nbsp;Rize Jin ,&nbsp;Tae-Sun Chung","doi":"10.1016/j.neucom.2025.131706","DOIUrl":null,"url":null,"abstract":"<div><div>Facial attribute editing in generative adversarial networks (GANs) involves two essential objectives: (1) accurately modifying the desired facial attribute, and (2) avoiding the unintended modification of irrelevant facial attributes. To address these challenges, we propose FaceDisentGAN, a novel generative framework for disentangled facial attribute manipulation. Specifically, we introduce: (1) a disentanglement module that decomposes feature maps into orthogonal spatial components (vertical and horizontal) to isolate target-related and unrelated semantics; (2) a two-stage training strategy that first learns general facial representations and then refines them to balance generic feature learning with fine-grained detail preservation; and (3) two novel evaluation metrics—Overall Preservation Score (OPS) and Perfect Match Rate (PMR)—which measure, respectively, the average preservation of non-target attributes and the proportion of perfectly disentangled results. This combination provides both soft and strict assessments of disentanglement quality. Extensive experiments demonstrate that FaceDisentGAN achieves accurate target attribute editing while effectively minimizing feature entanglement, outperforming several existing methods in both visual fidelity and semantic control.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131706"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023781","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Facial attribute editing in generative adversarial networks (GANs) involves two essential objectives: (1) accurately modifying the desired facial attribute, and (2) avoiding the unintended modification of irrelevant facial attributes. To address these challenges, we propose FaceDisentGAN, a novel generative framework for disentangled facial attribute manipulation. Specifically, we introduce: (1) a disentanglement module that decomposes feature maps into orthogonal spatial components (vertical and horizontal) to isolate target-related and unrelated semantics; (2) a two-stage training strategy that first learns general facial representations and then refines them to balance generic feature learning with fine-grained detail preservation; and (3) two novel evaluation metrics—Overall Preservation Score (OPS) and Perfect Match Rate (PMR)—which measure, respectively, the average preservation of non-target attributes and the proportion of perfectly disentangled results. This combination provides both soft and strict assessments of disentanglement quality. Extensive experiments demonstrate that FaceDisentGAN achieves accurate target attribute editing while effectively minimizing feature entanglement, outperforming several existing methods in both visual fidelity and semantic control.
FaceDisentGAN:具有目标语义对齐的解纠缠面部编辑
生成对抗网络(GANs)中的面部属性编辑涉及两个基本目标:(1)准确地修改所需的面部属性;(2)避免不相关的面部属性被意外修改。为了解决这些挑战,我们提出了FaceDisentGAN,这是一个用于解纠缠面部属性操作的新型生成框架。具体来说,我们引入了:(1)一个解纠缠模块,该模块将特征映射分解为正交的空间分量(垂直和水平),以分离目标相关和不相关的语义;(2)一种两阶段训练策略,首先学习一般的面部表征,然后对其进行细化,以平衡一般特征学习和细粒度细节保存;(3)提出了两个新的评价指标——总体保存分数(OPS)和完美匹配率(PMR),分别衡量非目标属性的平均保存率和完全解缠结果的比例。这种组合提供了对解缠质量的软的和严格的评估。大量实验表明,FaceDisentGAN在实现精确的目标属性编辑的同时,有效地减少了特征纠缠,在视觉保真度和语义控制方面都优于现有的几种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信