Multi-scale trend decomposition mixture of experts and time series retrieval-augmented modeling for erythromycin fermentation process

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yifei Sun , Xuefeng Yan
{"title":"Multi-scale trend decomposition mixture of experts and time series retrieval-augmented modeling for erythromycin fermentation process","authors":"Yifei Sun ,&nbsp;Xuefeng Yan","doi":"10.1016/j.neucom.2025.131701","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate time series (MTS) is the primary modality for storing data in real-world and industrial applications. In the context of batch fermentation processes, such data exhibit periodicity and repetition between samples, while demonstrating stage-wise and trending patterns within samples. Effectively leveraging historical production samples to uncover stage-specific characteristics and dynamic distribution patterns is a crucial approach for improving predictive accuracy. This paper proposes an MTS modeling framework that combines Retrieval-Augmented Generation (RAG) and a Mixture of Experts (MoE) model, i.e., <strong>M</strong>ulti-scale <strong>A</strong>ugmented <strong>S</strong>eries <strong>T</strong>rend <strong>E</strong>xperts with <strong>R</strong>etrieval, referred to as MASTER. We designed a general temporal feature augmentation method (MTS-RAG) to enhance predictive accuracy by efficiently completing contextual information during the data loading stage using representative historical samples. Additionally, we developed a multi-scale trend decomposition model based on the Kolmogorov-Arnold Network, which enhances both interpretability and predictive performance by independently modeling trend and seasonal components. Inspired by the success of sparse MoE in large language models, we introduce a Time Stage Router that employs temporal position embeddings and sparse gating structures to assist the model in identifying the current fermentation phase, thereby improving its generalization and practicality in multi-stage tasks. On an industrial dataset of erythromycin fermentation processes, MASTER achieved state-of-the-art predictive performance, and ablation studies further validated the effectiveness of its components.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131701"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023732","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate time series (MTS) is the primary modality for storing data in real-world and industrial applications. In the context of batch fermentation processes, such data exhibit periodicity and repetition between samples, while demonstrating stage-wise and trending patterns within samples. Effectively leveraging historical production samples to uncover stage-specific characteristics and dynamic distribution patterns is a crucial approach for improving predictive accuracy. This paper proposes an MTS modeling framework that combines Retrieval-Augmented Generation (RAG) and a Mixture of Experts (MoE) model, i.e., Multi-scale Augmented Series Trend Experts with Retrieval, referred to as MASTER. We designed a general temporal feature augmentation method (MTS-RAG) to enhance predictive accuracy by efficiently completing contextual information during the data loading stage using representative historical samples. Additionally, we developed a multi-scale trend decomposition model based on the Kolmogorov-Arnold Network, which enhances both interpretability and predictive performance by independently modeling trend and seasonal components. Inspired by the success of sparse MoE in large language models, we introduce a Time Stage Router that employs temporal position embeddings and sparse gating structures to assist the model in identifying the current fermentation phase, thereby improving its generalization and practicality in multi-stage tasks. On an industrial dataset of erythromycin fermentation processes, MASTER achieved state-of-the-art predictive performance, and ablation studies further validated the effectiveness of its components.
红霉素发酵过程多尺度趋势分解混合专家和时间序列检索增强模型
在现实世界和工业应用中,多变量时间序列(MTS)是存储数据的主要方式。在批量发酵过程的背景下,这些数据在样品之间表现出周期性和重复,同时在样品内展示阶段智慧和趋势模式。有效地利用历史生产样本来揭示特定阶段的特征和动态分布模式是提高预测准确性的关键方法。本文提出了一种结合检索增强生成(RAG)和混合专家模型(MoE)的MTS建模框架,即多尺度增强系列趋势专家与检索模型(MASTER)。我们设计了一种通用时间特征增强方法(MTS-RAG),通过在数据加载阶段使用具有代表性的历史样本有效地完成上下文信息来提高预测精度。此外,我们建立了基于Kolmogorov-Arnold网络的多尺度趋势分解模型,该模型通过对趋势和季节成分的独立建模,提高了可解释性和预测性能。受稀疏MoE在大型语言模型中的成功启发,我们引入了一种时间阶段路由器,该路由器采用时间位置嵌入和稀疏门控结构来帮助模型识别当前发酵阶段,从而提高了其在多阶段任务中的泛化和实用性。在红霉素发酵过程的工业数据集上,MASTER实现了最先进的预测性能,消融研究进一步验证了其成分的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信