Landis-type results for discrete equations

IF 1.5 1区 数学 Q1 MATHEMATICS
Aingeru Fernández-Bertolin , Luz Roncal , Diana Stan
{"title":"Landis-type results for discrete equations","authors":"Aingeru Fernández-Bertolin ,&nbsp;Luz Roncal ,&nbsp;Diana Stan","doi":"10.1016/j.aim.2025.110558","DOIUrl":null,"url":null,"abstract":"<div><div>We prove Landis-type results for both the semidiscrete heat and the stationary discrete Schrödinger equations. For the semidiscrete heat equation we show that, under the assumption of two-time spatial decay conditions on the solution <em>u</em>, then necessarily <span><math><mi>u</mi><mo>≡</mo><mn>0</mn></math></span>. For the stationary discrete Schrödinger equation we deduce that, under a vanishing condition at infinity on the solution <em>u</em>, then <span><math><mi>u</mi><mo>≡</mo><mn>0</mn></math></span>. In order to obtain such results, we demonstrate suitable quantitative upper and lower estimates for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the solution within a spatial lattice <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>Z</mi><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>. These estimates manifest an interpolation phenomenon between continuum and discrete scales, showing that close-to-continuum and purely discrete regimes are different in nature.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"482 ","pages":"Article 110558"},"PeriodicalIF":1.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004566","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove Landis-type results for both the semidiscrete heat and the stationary discrete Schrödinger equations. For the semidiscrete heat equation we show that, under the assumption of two-time spatial decay conditions on the solution u, then necessarily u0. For the stationary discrete Schrödinger equation we deduce that, under a vanishing condition at infinity on the solution u, then u0. In order to obtain such results, we demonstrate suitable quantitative upper and lower estimates for the L2-norm of the solution within a spatial lattice (hZ)d. These estimates manifest an interpolation phenomenon between continuum and discrete scales, showing that close-to-continuum and purely discrete regimes are different in nature.
离散方程的landis型结果
我们证明了半离散热方程和平稳离散Schrödinger方程的landis型结果。对于半离散热方程,我们证明了在解u的两时间空间衰减条件下,则u必然≡0。对于平稳离散Schrödinger方程,我们推导出,在解u在无穷远处消失的条件下,则u≡0。为了得到这样的结果,我们证明了在空间格(hZ)d内解的l2范数的合适的定量上下限估计。这些估计显示了连续和离散尺度之间的插值现象,表明接近连续和纯粹离散的制度在本质上是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信