{"title":"SpecSpatMamba: an efficient hyperspectral image classification method integrating spectral-spatial dual-path and state space model","authors":"Jianshang Liao , Liguo Wang","doi":"10.1016/j.ejrs.2025.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when processing high-dimensional spectral data, leading to overfitting and poor generalization; (2) existing approaches fail to effectively address spectral band redundancy, resulting in computational inefficiency and suboptimal feature representation; (3) conventional methods lack synergistic utilization of spatial-spectral information, treating spectral and spatial dimensions uniformly rather than exploiting their distinct characteristics. To address these gaps, this paper proposes SpecSpatMamba, a novel hyperspectral image classification method integrating spectral-spatial dual-path feature extraction with state space models. SpecSpatMamba introduces three core innovations: (1) Dual-path feature extraction with spectral-spatial separation, where 1 × 1 convolutions extract spectral features and 3 × 3 convolutions capture spatial features; (2) Hybrid architecture combining state space models with convolutional operations for balanced long-range dependency and local feature capture; (3) Computational efficiency breakthrough achieving O(L·d) linear complexity compared to Transformer’s O(L2·d) complexity. Experiments on four benchmark datasets—Indian Pines, Pavia University, Salinas Valley, and Houston2013—demonstrate competitive performance compared to state-of-the-art methods. SpecSpatMamba achieves overall accuracies of 95.11 %, 98.61 %, 96.97 %, and 91.48 %, respectively. Notably, SpecSpatMamba demonstrates superior cross-dataset consistency and robust performance across diverse geographic environments, with particularly strong improvements in complex urban scenarios (+0.39 % on Houston2013) and agricultural settings (+0.57 % on Salinas Valley), confirming the method’s effectiveness in addressing high-dimensional hyperspectral data challenges.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 4","pages":"Pages 628-644"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000626","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Current hyperspectral image classification methods face three critical limitations: (1) traditional CNNs suffer from the curse of dimensionality when processing high-dimensional spectral data, leading to overfitting and poor generalization; (2) existing approaches fail to effectively address spectral band redundancy, resulting in computational inefficiency and suboptimal feature representation; (3) conventional methods lack synergistic utilization of spatial-spectral information, treating spectral and spatial dimensions uniformly rather than exploiting their distinct characteristics. To address these gaps, this paper proposes SpecSpatMamba, a novel hyperspectral image classification method integrating spectral-spatial dual-path feature extraction with state space models. SpecSpatMamba introduces three core innovations: (1) Dual-path feature extraction with spectral-spatial separation, where 1 × 1 convolutions extract spectral features and 3 × 3 convolutions capture spatial features; (2) Hybrid architecture combining state space models with convolutional operations for balanced long-range dependency and local feature capture; (3) Computational efficiency breakthrough achieving O(L·d) linear complexity compared to Transformer’s O(L2·d) complexity. Experiments on four benchmark datasets—Indian Pines, Pavia University, Salinas Valley, and Houston2013—demonstrate competitive performance compared to state-of-the-art methods. SpecSpatMamba achieves overall accuracies of 95.11 %, 98.61 %, 96.97 %, and 91.48 %, respectively. Notably, SpecSpatMamba demonstrates superior cross-dataset consistency and robust performance across diverse geographic environments, with particularly strong improvements in complex urban scenarios (+0.39 % on Houston2013) and agricultural settings (+0.57 % on Salinas Valley), confirming the method’s effectiveness in addressing high-dimensional hyperspectral data challenges.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.