Leveraging spatial-channel attention in U-Net for enhanced segmentation of martian dust storms

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Daniele Venturini , Marco Raoul Marini , Luigi Cinque , Gian Luca Foresti
{"title":"Leveraging spatial-channel attention in U-Net for enhanced segmentation of martian dust storms","authors":"Daniele Venturini ,&nbsp;Marco Raoul Marini ,&nbsp;Luigi Cinque ,&nbsp;Gian Luca Foresti","doi":"10.1016/j.imavis.2025.105754","DOIUrl":null,"url":null,"abstract":"<div><div>Automated detection of Martian dust storms is critical for analyzing planetary climate dynamics, yet segmentation remains challenging due to diffuse storm boundaries and data artifacts. This study presents a Convolutional Block Attention Module-enhanced (CBAM-enhanced) U-Net architecture for dust storm segmentation using Mars Reconnaissance Orbiter (MRO) MARCI Mars Daily Global Maps (MDGMs) from the Mars Dust Activity Database (MDAD v1.1). The approach combines attention-driven feature refinement with class-imbalance mitigation and a patching strategy to handle missing data in global maps. The model achieves 0.6502 Intersection over Union (IoU) and 0.6883 Dice scores on MDAD data, outperforming baseline U-Net by 3%, while using 8x fewer parameters (1.95M vs 23M) in comparison to state-of-the-art methods, significantly reducing computational costs. Ablation experiments confirm CBAM reduces false positives and preserves fine boundaries; case studies show the model, in some cases, detects sub-visual dust features missed in ground truth annotations, suggesting potential utility for discovering marginal atmospheric phenomena. This work establishes an efficient framework for processing planetary image data while balancing accuracy and computational practicality.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"163 ","pages":"Article 105754"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625003427","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automated detection of Martian dust storms is critical for analyzing planetary climate dynamics, yet segmentation remains challenging due to diffuse storm boundaries and data artifacts. This study presents a Convolutional Block Attention Module-enhanced (CBAM-enhanced) U-Net architecture for dust storm segmentation using Mars Reconnaissance Orbiter (MRO) MARCI Mars Daily Global Maps (MDGMs) from the Mars Dust Activity Database (MDAD v1.1). The approach combines attention-driven feature refinement with class-imbalance mitigation and a patching strategy to handle missing data in global maps. The model achieves 0.6502 Intersection over Union (IoU) and 0.6883 Dice scores on MDAD data, outperforming baseline U-Net by 3%, while using 8x fewer parameters (1.95M vs 23M) in comparison to state-of-the-art methods, significantly reducing computational costs. Ablation experiments confirm CBAM reduces false positives and preserves fine boundaries; case studies show the model, in some cases, detects sub-visual dust features missed in ground truth annotations, suggesting potential utility for discovering marginal atmospheric phenomena. This work establishes an efficient framework for processing planetary image data while balancing accuracy and computational practicality.
利用U-Net中的空间通道关注来增强对火星沙尘暴的分割
火星沙尘暴的自动检测对于分析行星气候动力学至关重要,但由于分散的风暴边界和数据工件,分割仍然具有挑战性。本研究提出了一种卷积块注意模块增强(cbam增强)的U-Net架构,用于使用火星勘测轨道器(MRO) MARCI火星每日全球地图(mdgm)从火星尘埃活动数据库(MDAD v1.1)进行沙尘暴分割。该方法将注意力驱动的特征细化与职业失衡缓解和补丁策略相结合,以处理全局地图中的缺失数据。该模型在MDAD数据上实现了0.6502 Intersection over Union (IoU)和0.6883 Dice得分,比基线U-Net高出3%,同时使用的参数(1.95M vs 23M)比最先进的方法少了8倍,显著降低了计算成本。消融实验证实,CBAM减少了误报,并保持了良好的边界;案例研究表明,在某些情况下,该模型可以检测到地面真值注释中遗漏的亚视觉尘埃特征,这表明该模型在发现边缘大气现象方面具有潜在的实用性。本工作建立了一个有效的框架,处理行星图像数据,同时平衡精度和计算实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信