Computational modeling of the hepatocytes reveals new insights into alterations in drug metabolism, oxidative stress response, and glutathione detoxification in acetaminophen-induced hepatotoxicity associated with MASLD
{"title":"Computational modeling of the hepatocytes reveals new insights into alterations in drug metabolism, oxidative stress response, and glutathione detoxification in acetaminophen-induced hepatotoxicity associated with MASLD","authors":"Yuki Miura , Yasuyuki Sakai , Masaki Nishikawa , Eric Leclerc","doi":"10.1016/j.comtox.2025.100384","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most common liver diseases worldwide, originating from abnormal fat accumulation in the liver. Acetaminophen (APAP) is a common antipyretic, but its overdose is a leading cause of acute liver failure. Clinical studies suggest that APAP-induced hepatotoxicity can be more frequent and severe in obese patients with MASLD. To investigate this process, we have developed a new mathematical model that comprehensively incorporates lipid metabolism, APAP metabolism, and glutathione (GSH) detoxification. In MASLD patients, we found that CYP and GST activities have higher sensitivity to ROS production than UGT and SULT, which are highly effective in detoxifying APAP. We also highlighted that the upregulation of GPx poses an unanticipated risk during steatosis by inducing an increase in H<sub>2</sub>O<sub>2</sub>. This occurs due to a vicious circle in which increasing NAPQI adducts further elevate H<sub>2</sub>O<sub>2</sub> levels. According to clinical reports, the toxicity of APAP varies depending on the progression of MASLD. We simulated that the pool of enzymatic alterations observed in steatotic patients exacerbates APAP-induced toxicity, which is thought to be due to a significant upregulation of CYP2E1. In contrast, the enzyme changes in MASH patients alleviate APAP-induced toxicity, likely due to decreased activity of CYPs and increased activity of UGT and GST. We believe that our strategy, which couples lipid and drug metabolism, offers valuable pharmacological insights for identifying enzymes that play a significant role in liver injury and for devising future therapeutic strategies in the context of MASLD.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"36 ","pages":"Article 100384"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111325000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most common liver diseases worldwide, originating from abnormal fat accumulation in the liver. Acetaminophen (APAP) is a common antipyretic, but its overdose is a leading cause of acute liver failure. Clinical studies suggest that APAP-induced hepatotoxicity can be more frequent and severe in obese patients with MASLD. To investigate this process, we have developed a new mathematical model that comprehensively incorporates lipid metabolism, APAP metabolism, and glutathione (GSH) detoxification. In MASLD patients, we found that CYP and GST activities have higher sensitivity to ROS production than UGT and SULT, which are highly effective in detoxifying APAP. We also highlighted that the upregulation of GPx poses an unanticipated risk during steatosis by inducing an increase in H2O2. This occurs due to a vicious circle in which increasing NAPQI adducts further elevate H2O2 levels. According to clinical reports, the toxicity of APAP varies depending on the progression of MASLD. We simulated that the pool of enzymatic alterations observed in steatotic patients exacerbates APAP-induced toxicity, which is thought to be due to a significant upregulation of CYP2E1. In contrast, the enzyme changes in MASH patients alleviate APAP-induced toxicity, likely due to decreased activity of CYPs and increased activity of UGT and GST. We believe that our strategy, which couples lipid and drug metabolism, offers valuable pharmacological insights for identifying enzymes that play a significant role in liver injury and for devising future therapeutic strategies in the context of MASLD.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs