Francesco Blefari , Cristian Cosentino , Francesco Aurelio Pironti , Angelo Furfaro , Fabrizio Marozzo
{"title":"CyberRAG: An agentic RAG cyber attack classification and reporting tool","authors":"Francesco Blefari , Cristian Cosentino , Francesco Aurelio Pironti , Angelo Furfaro , Fabrizio Marozzo","doi":"10.1016/j.future.2025.108186","DOIUrl":null,"url":null,"abstract":"<div><div>Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming analysts with logs requiring rapidly evolving expertise. Conventional machine-learning detectors reduce alert volume but still yield many false positives, while standard Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify predictions. We present CyberRAG, a modular agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates: (i) fine-tuned classifiers specialized by attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that queries a domain-specific knowledge base until evidence is relevant and self-consistent. Unlike traditional RAG, CyberRAG adopts an agentic design that enables dynamic control flow and adaptive reasoning. This architecture autonomously refines threat labels and natural-language justifications, reducing false positives and enhancing interpretability. It is also extensible: new attack types can be supported by adding classifiers without retraining the core agent. CyberRAG was evaluated on SQL Injection, XSS, and SSTI, achieving over 94 % accuracy per class and a final classification accuracy of 94.92 % through semantic orchestration. Generated explanations reached 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation, with robustness preserved against adversarial and unseen payloads. These results show that agentic, specialist-oriented RAG can combine high detection accuracy with trustworthy, SOC-ready prose, offering a flexible path toward partially automated cyber-defense workflows.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"176 ","pages":"Article 108186"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004807","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming analysts with logs requiring rapidly evolving expertise. Conventional machine-learning detectors reduce alert volume but still yield many false positives, while standard Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify predictions. We present CyberRAG, a modular agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates: (i) fine-tuned classifiers specialized by attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that queries a domain-specific knowledge base until evidence is relevant and self-consistent. Unlike traditional RAG, CyberRAG adopts an agentic design that enables dynamic control flow and adaptive reasoning. This architecture autonomously refines threat labels and natural-language justifications, reducing false positives and enhancing interpretability. It is also extensible: new attack types can be supported by adding classifiers without retraining the core agent. CyberRAG was evaluated on SQL Injection, XSS, and SSTI, achieving over 94 % accuracy per class and a final classification accuracy of 94.92 % through semantic orchestration. Generated explanations reached 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation, with robustness preserved against adversarial and unseen payloads. These results show that agentic, specialist-oriented RAG can combine high detection accuracy with trustworthy, SOC-ready prose, offering a flexible path toward partially automated cyber-defense workflows.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.