Transfer learning based standard-essential patent prediction with prior transfer direction learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weidong Liu , Xiaoyu Fan , Kai Wang , Hongjun Sun , Keqin Gan , Cuicui Jiang , Fangyuan Lei
{"title":"Transfer learning based standard-essential patent prediction with prior transfer direction learning","authors":"Weidong Liu ,&nbsp;Xiaoyu Fan ,&nbsp;Kai Wang ,&nbsp;Hongjun Sun ,&nbsp;Keqin Gan ,&nbsp;Cuicui Jiang ,&nbsp;Fangyuan Lei","doi":"10.1016/j.eswa.2025.129869","DOIUrl":null,"url":null,"abstract":"<div><div>Standard-Essential Patent Prediction (SEPP) holds strategic significance for technological development and international market competition. Traditional SEPP models learned from Standard-Essential Patents (SEPs) with country-specific distribution differences result in different prediction accuracy. Therefore, we propose two propositions: (1) Can transfer learning be leveraged to improve prediction performance of lower-accuracy countries. (2) Can different transfer directions achieve different transfer learning performances. To address these, we propose a transfer learning based SEPP ewith prior transfer direction learning (TLSEPP-PTDL) model. The model uses a mixed transfer learning method, achieving an average accuracy of 92.03 % on four datasets, surpassing the state-of-the-art (SOTA) by 2.03 % and improving precision, recall, and F1-score by 4.25 %, 0.33 %, and 2.25 %, respectively. Moreover, we conduct experiments across countries with different patent volume, standardization rate, and standardization speed, resulting in positive transfer when transfer learning uses source domains with (1) high volume, high rate, and high speed; (2) high volume, low rate, and high speed; (3) low volume, high rate, and high speed.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129869"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425034840","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Standard-Essential Patent Prediction (SEPP) holds strategic significance for technological development and international market competition. Traditional SEPP models learned from Standard-Essential Patents (SEPs) with country-specific distribution differences result in different prediction accuracy. Therefore, we propose two propositions: (1) Can transfer learning be leveraged to improve prediction performance of lower-accuracy countries. (2) Can different transfer directions achieve different transfer learning performances. To address these, we propose a transfer learning based SEPP ewith prior transfer direction learning (TLSEPP-PTDL) model. The model uses a mixed transfer learning method, achieving an average accuracy of 92.03 % on four datasets, surpassing the state-of-the-art (SOTA) by 2.03 % and improving precision, recall, and F1-score by 4.25 %, 0.33 %, and 2.25 %, respectively. Moreover, we conduct experiments across countries with different patent volume, standardization rate, and standardization speed, resulting in positive transfer when transfer learning uses source domains with (1) high volume, high rate, and high speed; (2) high volume, low rate, and high speed; (3) low volume, high rate, and high speed.
基于迁移学习的标准基本专利预测与先验迁移方向学习
标准必要专利预测(SEPP)对于技术发展和国际市场竞争具有战略意义。传统的SEPP模型从标准必要专利(sep)中学习,由于国家分布差异,导致预测精度不同。因此,我们提出两个命题:(1)能否利用迁移学习来提高低准确率国家的预测性能。(2)不同的迁移方向是否会产生不同的迁移学习绩效?为了解决这些问题,我们提出了一种基于迁移学习的SEPP与先验迁移方向学习(TLSEPP-PTDL)模型。该模型使用混合迁移学习方法,在4个数据集上实现了92.03%的平均准确率,比最先进的(SOTA)算法高出2.03%,并将准确率、召回率和F1-score分别提高了4.25%、0.33%和2.25%。此外,我们在不同专利量、标准化率和标准化速度的国家进行了实验,发现当迁移学习使用高容量、高速率和高速度的源域时,会产生正迁移;(2)体积大、速率低、速度快;(3)小体积、高速率、高速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信