High-Fidelity saturation prediction using physics-informed attention neural network

IF 4.6 0 ENERGY & FUELS
Yinhong Tian , Guiwen Wang , Hongbin Li , Jin Lai
{"title":"High-Fidelity saturation prediction using physics-informed attention neural network","authors":"Yinhong Tian ,&nbsp;Guiwen Wang ,&nbsp;Hongbin Li ,&nbsp;Jin Lai","doi":"10.1016/j.geoen.2025.214246","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of water saturation is critical for reservoir characterization and optimal production strategies in ultra-deep tight sandstone gas reservoirs. However, traditional empirical models often fail to provide reliable predictions due to the inherent heterogeneity and nonlinear interactions within these reservoirs. To address these challenges, this paper proposes the Saturation Neural Network (SatuNN), a novel deep learning framework that combines CNNs, window attention, axial attention and BiLSTM to capture multi-scale spatiotemporal features from logging data. Specifically, the CNNs and window attention layers capture local spatial features, while the BiLSTM and axial attention layers address global temporal dependencies. The proposed model leverages a physics-informed neural network strategy to embed petrophysical constraints directly into the training process, ensuring physically consistent and geologically meaningful predictions. Comprehensive evaluations using core and logging data from ultradeep tight sandstone reservoirs in the Tuha Basin demonstrate that SatuNN achieves superior predictive accuracy and significantly lower errors (R<sup>2</sup> = 0.92, MAE = 3.27 %) compared to both the optimal ablation baseline model (Without WA: R<sup>2</sup> = 0.86, MAE = 4.51 %) and traditional petrophysical model (Archie: R<sup>2</sup> = 0.84, MAE = 4.83 %). Moreover, successful field applications in two blind-test wells further validate the robustness and practical applicability of the proposed model. The presented SatuNN framework provides an accurate approach for saturation prediction in ultradeep tight sandstone gas reservoirs, effectively offering potential to improve reservoir evaluation and field development strategies.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214246"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025006049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of water saturation is critical for reservoir characterization and optimal production strategies in ultra-deep tight sandstone gas reservoirs. However, traditional empirical models often fail to provide reliable predictions due to the inherent heterogeneity and nonlinear interactions within these reservoirs. To address these challenges, this paper proposes the Saturation Neural Network (SatuNN), a novel deep learning framework that combines CNNs, window attention, axial attention and BiLSTM to capture multi-scale spatiotemporal features from logging data. Specifically, the CNNs and window attention layers capture local spatial features, while the BiLSTM and axial attention layers address global temporal dependencies. The proposed model leverages a physics-informed neural network strategy to embed petrophysical constraints directly into the training process, ensuring physically consistent and geologically meaningful predictions. Comprehensive evaluations using core and logging data from ultradeep tight sandstone reservoirs in the Tuha Basin demonstrate that SatuNN achieves superior predictive accuracy and significantly lower errors (R2 = 0.92, MAE = 3.27 %) compared to both the optimal ablation baseline model (Without WA: R2 = 0.86, MAE = 4.51 %) and traditional petrophysical model (Archie: R2 = 0.84, MAE = 4.83 %). Moreover, successful field applications in two blind-test wells further validate the robustness and practical applicability of the proposed model. The presented SatuNN framework provides an accurate approach for saturation prediction in ultradeep tight sandstone gas reservoirs, effectively offering potential to improve reservoir evaluation and field development strategies.
利用物理信息关注神经网络进行高保真饱和度预测
超深层致密砂岩气藏含水饱和度的准确估计对于储层表征和优化生产策略至关重要。然而,由于这些储层内部固有的非均质性和非线性相互作用,传统的经验模型往往无法提供可靠的预测。为了解决这些挑战,本文提出了饱和神经网络(SatuNN),这是一种结合cnn、窗口注意、轴向注意和BiLSTM的新型深度学习框架,可以从测井数据中捕获多尺度时空特征。具体来说,cnn和窗口注意层捕获局部空间特征,而BiLSTM和轴向注意层处理全局时间依赖性。该模型利用物理信息神经网络策略,将岩石物理约束直接嵌入到训练过程中,确保物理一致性和地质意义的预测。利用图哈盆地超深致密砂岩储层岩心和测井资料进行的综合评价表明,与最佳烧蚀基线模型(不含WA: R2 = 0.86, MAE = 4.51%)和传统岩石物理模型(Archie: R2 = 0.84, MAE = 4.83%)相比,SatuNN的预测精度更高,误差显著降低(R2 = 0.92, MAE = 3.27%)。此外,两口盲测井的成功现场应用进一步验证了该模型的鲁棒性和实际适用性。所提出的SatuNN框架为超深层致密砂岩气藏饱和度预测提供了一种准确的方法,有效地为改进储层评价和油田开发策略提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信