Remmer L. Salas , Portia Mahal G. Sabido , Ricky B. Nellas
{"title":"Interpretable support vector classifier for reliable prediction of antibacterial activity of modified peptides against Escherichia coli","authors":"Remmer L. Salas , Portia Mahal G. Sabido , Ricky B. Nellas","doi":"10.1016/j.jmgm.2025.109188","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics, whose effectiveness is declining due to rising antimicrobial resistance (AMR). To accelerate AMP discovery, we developed ISCAPE (<strong>I</strong>nterpretable <strong>S</strong>upport Vector <strong>C</strong>lassifier of <strong>A</strong>ntibacterial Activity of <strong>P</strong>eptides against <strong><em>E</em></strong><em>scherichia coli</em>), a machine learning (ML) model that addresses the limitations of current AMP predictors. ISCAPE requires only a Simplified Molecular-Input Line-Entry System (SMILES) string as input and can predict the activity of both natural and chemically modified peptides against <em>E. coli</em> ATCC 25922. Activity is defined by a minimum inhibitory concentration (MIC) threshold of ≤16 μg/mL. To ensure reliability, only MIC values obtained under comparable experimental conditions were included in our curated dataset. ISCAPE outperformed the state-of-the-art AntiMPmod, achieving an area under the receiver operating characteristic curve (AUROC) of 91.83% and a Matthew's correlation coefficient (MCC) of 71.86%. Features driving this performance include the fraction of carbon-carbon pairs and feature- and count-based extended connectivity fingerprints (ECFPs). Model interpretability is enhanced through SHapley Additive exPlanations (SHAP), which identifies the molecular features most critical for AMP activity. To our knowledge, ISCAPE is the first interpretable ML predictor capable of predicting antibacterial activity for both natural and modified peptides against a specific <em>E. coli</em> strain. It is a user-friendly tool that allows experimentalists to pinpoint key molecular features, reducing the need for extensive structure-activity relationship (SAR) studies and guiding the design of novel AMPs.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"142 ","pages":"Article 109188"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325002487","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics, whose effectiveness is declining due to rising antimicrobial resistance (AMR). To accelerate AMP discovery, we developed ISCAPE (Interpretable Support Vector Classifier of Antibacterial Activity of Peptides against Escherichia coli), a machine learning (ML) model that addresses the limitations of current AMP predictors. ISCAPE requires only a Simplified Molecular-Input Line-Entry System (SMILES) string as input and can predict the activity of both natural and chemically modified peptides against E. coli ATCC 25922. Activity is defined by a minimum inhibitory concentration (MIC) threshold of ≤16 μg/mL. To ensure reliability, only MIC values obtained under comparable experimental conditions were included in our curated dataset. ISCAPE outperformed the state-of-the-art AntiMPmod, achieving an area under the receiver operating characteristic curve (AUROC) of 91.83% and a Matthew's correlation coefficient (MCC) of 71.86%. Features driving this performance include the fraction of carbon-carbon pairs and feature- and count-based extended connectivity fingerprints (ECFPs). Model interpretability is enhanced through SHapley Additive exPlanations (SHAP), which identifies the molecular features most critical for AMP activity. To our knowledge, ISCAPE is the first interpretable ML predictor capable of predicting antibacterial activity for both natural and modified peptides against a specific E. coli strain. It is a user-friendly tool that allows experimentalists to pinpoint key molecular features, reducing the need for extensive structure-activity relationship (SAR) studies and guiding the design of novel AMPs.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.