Comprehensive first-principles study of structural, electronic, magnetic, elastic, ferro-piezoelectricity, thermodynamic, and thermoelectric properties of hexagonal GaMnO3 perovskite for multiferroic applications

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Omar Lahmar , Ali Mir , Moued Mebrek
{"title":"Comprehensive first-principles study of structural, electronic, magnetic, elastic, ferro-piezoelectricity, thermodynamic, and thermoelectric properties of hexagonal GaMnO3 perovskite for multiferroic applications","authors":"Omar Lahmar ,&nbsp;Ali Mir ,&nbsp;Moued Mebrek","doi":"10.1016/j.cocom.2025.e01150","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a comprehensive first-principles investigation of the structural, electronic, magnetic, elastic, ferro-piezoelectric, thermodynamic, thermoelectric, and vibrational properties of hexagonal GaMnO<sub>3</sub> perovskite using density functional theory (DFT). Structural optimization confirms the stability of the polar P6<sub>3</sub>c phase, which exhibits a half-metallic ground state with robust ferromagnetic ordering. The electronic structure reveals metallic behavior in the spin-up channel and a wide band gap in the spin-down channel, confirming the half-metallic character. Magnetic analysis shows strong Mn-derived local moments and significant exchange interactions, favorable for spintronic applications. Elastic constants satisfy the Born stability criteria, indicating mechanical stability with ductile behavior and anisotropy consistent with layered hexagonal oxides. Piezoelectric and ferroelectric analyses demonstrate strong spin-dependent polarization and notable electromechanical coupling, highlighting the potential for multifunctional device integration. Thermodynamic calculations reveal stable heat capacity, entropy, and Debye temperature trends across a broad range of temperatures and pressures, while thermoelectric calculations yield nearly isotropic transport with a figure of merit close to unity, suggesting promising thermoelectric efficiency. Phonon dispersion curves show no imaginary frequencies, confirming dynamical stability, with vibrational modes distributed into low-frequency cation vibrations, intermediate MnO<sub>5</sub> distortions, and high-frequency oxygen stretching. These results establish GaMnO<sub>3</sub> as a mechanically, thermodynamically, and dynamically stable multiferroic candidate with coupled ferroic orders and multifunctional potential in spintronic, piezoelectric, and energy-related applications.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01150"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a comprehensive first-principles investigation of the structural, electronic, magnetic, elastic, ferro-piezoelectric, thermodynamic, thermoelectric, and vibrational properties of hexagonal GaMnO3 perovskite using density functional theory (DFT). Structural optimization confirms the stability of the polar P63c phase, which exhibits a half-metallic ground state with robust ferromagnetic ordering. The electronic structure reveals metallic behavior in the spin-up channel and a wide band gap in the spin-down channel, confirming the half-metallic character. Magnetic analysis shows strong Mn-derived local moments and significant exchange interactions, favorable for spintronic applications. Elastic constants satisfy the Born stability criteria, indicating mechanical stability with ductile behavior and anisotropy consistent with layered hexagonal oxides. Piezoelectric and ferroelectric analyses demonstrate strong spin-dependent polarization and notable electromechanical coupling, highlighting the potential for multifunctional device integration. Thermodynamic calculations reveal stable heat capacity, entropy, and Debye temperature trends across a broad range of temperatures and pressures, while thermoelectric calculations yield nearly isotropic transport with a figure of merit close to unity, suggesting promising thermoelectric efficiency. Phonon dispersion curves show no imaginary frequencies, confirming dynamical stability, with vibrational modes distributed into low-frequency cation vibrations, intermediate MnO5 distortions, and high-frequency oxygen stretching. These results establish GaMnO3 as a mechanically, thermodynamically, and dynamically stable multiferroic candidate with coupled ferroic orders and multifunctional potential in spintronic, piezoelectric, and energy-related applications.
六方GaMnO3钙钛矿的结构、电子、磁性、弹性、铁压电性、热力学和热电性的综合第一性原理研究
在这项工作中,我们使用密度泛函理论(DFT)对六方GaMnO3钙钛矿的结构、电子、磁性、弹性、铁压电、热力学、热电和振动性质进行了全面的第一性原理研究。结构优化证实了P63c极性相的稳定性,呈现出半金属基态,铁磁有序。电子结构显示了自旋向上通道的金属行为和自旋向下通道的宽带隙,证实了半金属性质。磁分析显示强的mn衍生局部矩和显著的交换相互作用,有利于自旋电子应用。弹性常数满足Born稳定性判据,表明具有延性和各向异性的力学稳定性与层状六方氧化物一致。压电和铁电分析显示出强的自旋依赖极化和显著的机电耦合,突出了多功能器件集成的潜力。热力学计算揭示了在广泛的温度和压力范围内稳定的热容量、熵和德拜温度趋势,而热电计算产生了几乎各向同性的输运,其价值接近于统一,表明热电效率很有希望。声子色散曲线没有虚频率,证实了其动力学稳定性,振动模式分布为低频阳离子振动、中间MnO5畸变和高频氧拉伸。这些结果确立了GaMnO3作为一种机械、热力学和动态稳定的多铁性候选材料,在自旋电子、压电和能源相关应用中具有耦合的铁序和多功能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信