Estimating singular functions of kernel cross-covariance operators: An investigation of the Nyström method

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Min Xu , Qi-Hang Zhou , Qin Fang , Zhuo-Xi Shi
{"title":"Estimating singular functions of kernel cross-covariance operators: An investigation of the Nyström method","authors":"Min Xu ,&nbsp;Qi-Hang Zhou ,&nbsp;Qin Fang ,&nbsp;Zhuo-Xi Shi","doi":"10.1016/j.jmva.2025.105514","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the Nyström method as an efficient means of overcoming the computational bottleneck inherent in estimating the singular functions of kernel cross-covariance operators, which play a central role in tasks such as covariate shift correction and multi-view learning. We present a Nyström-type approximation of the kernel cross-covariance operator, and establish its convergence rate. Furthermore, we derive a novel bound on the weighted sum of squared estimation errors of all associated singular functions, providing tighter control than traditional bounds that treat each error individually. Our theoretical analysis reveals that the Nyström-based singular function estimators attain the same statistical accuracy as their full empirical counterparts, while offering significant computational savings. Numerical experiments further confirm the practical effectiveness of the proposed approach.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105514"},"PeriodicalIF":1.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25001095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Nyström method as an efficient means of overcoming the computational bottleneck inherent in estimating the singular functions of kernel cross-covariance operators, which play a central role in tasks such as covariate shift correction and multi-view learning. We present a Nyström-type approximation of the kernel cross-covariance operator, and establish its convergence rate. Furthermore, we derive a novel bound on the weighted sum of squared estimation errors of all associated singular functions, providing tighter control than traditional bounds that treat each error individually. Our theoretical analysis reveals that the Nyström-based singular function estimators attain the same statistical accuracy as their full empirical counterparts, while offering significant computational savings. Numerical experiments further confirm the practical effectiveness of the proposed approach.
估计核交叉协方差算子的奇异函数:Nyström方法的研究
我们研究了Nyström方法作为克服核交叉协方差算子奇异函数估计固有的计算瓶颈的有效手段,这在协变量移位校正和多视图学习等任务中起着核心作用。给出了核交叉协方差算子的Nyström-type近似,并确定了其收敛速度。此外,我们推导了所有相关奇异函数的加权平方和估计误差的新界,比单独处理每个误差的传统界提供了更严格的控制。我们的理论分析表明,Nyström-based奇异函数估计器获得与完全经验对应的相同的统计精度,同时提供显着的计算节省。数值实验进一步验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信