Elena Salomé Natterer , Saini Rohan Rao , Alejandro Tejada Lapuerta , Roman Engelhardt , Sebastian Hörl , Klaus Bogenberger
{"title":"Machine learning surrogates for agent-based models in transportation policy analysis","authors":"Elena Salomé Natterer , Saini Rohan Rao , Alejandro Tejada Lapuerta , Roman Engelhardt , Sebastian Hörl , Klaus Bogenberger","doi":"10.1016/j.trc.2025.105360","DOIUrl":null,"url":null,"abstract":"<div><div>Effective traffic policies are crucial for managing congestion and reducing emissions. Agent-based transportation models (ABMs) offer a detailed analysis of how these policies affect travel behaviour at a granular level. However, computational constraints limit the number of scenarios that can be tested with ABMs and therefore their ability to find optimal policy settings.</div><div>In this proof-of-concept study, we propose a machine learning (ML)-based surrogate model to efficiently explore this vast solution space. By combining Graph Neural Networks (GNNs) with the attention mechanism from Transformers, the model predicts the effects of traffic policies on the road network at the link level.</div><div>We implement our approach in a large-scale MATSim simulation of Paris, France, covering over 30,000 road segments and 10,000 simulations, applying a policy involving capacity reduction on main roads. The ML surrogate achieves an overall <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> of 0.91; on primary roads where the policy applies, it reaches an <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> of 0.98. This study shows that the combination of GNNs and Transformer architectures can effectively serve as a surrogate for complex agent-based transportation models with the potential to enable large-scale policy optimization, helping urban planners explore a broader range of interventions more efficiently.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"180 ","pages":"Article 105360"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X2500364X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective traffic policies are crucial for managing congestion and reducing emissions. Agent-based transportation models (ABMs) offer a detailed analysis of how these policies affect travel behaviour at a granular level. However, computational constraints limit the number of scenarios that can be tested with ABMs and therefore their ability to find optimal policy settings.
In this proof-of-concept study, we propose a machine learning (ML)-based surrogate model to efficiently explore this vast solution space. By combining Graph Neural Networks (GNNs) with the attention mechanism from Transformers, the model predicts the effects of traffic policies on the road network at the link level.
We implement our approach in a large-scale MATSim simulation of Paris, France, covering over 30,000 road segments and 10,000 simulations, applying a policy involving capacity reduction on main roads. The ML surrogate achieves an overall of 0.91; on primary roads where the policy applies, it reaches an of 0.98. This study shows that the combination of GNNs and Transformer architectures can effectively serve as a surrogate for complex agent-based transportation models with the potential to enable large-scale policy optimization, helping urban planners explore a broader range of interventions more efficiently.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.