Hüseyin Ünlü, Samet Tenekeci, Dhia Eddine Kennouche, Onur Demirörs
{"title":"Automating software size measurement with language models: Insights from industrial case studies","authors":"Hüseyin Ünlü, Samet Tenekeci, Dhia Eddine Kennouche, Onur Demirörs","doi":"10.1016/j.jss.2025.112638","DOIUrl":null,"url":null,"abstract":"<div><div>Objective software size measurement is critical for accurate effort estimation, yet many organizations avoid it due to high costs, required expertise, and time-consuming manual effort. This often leads to vague predictions, poor planning, and project overruns. To address this challenge, we investigate the use of pre-trained language models — BERT and SE-BERT — to automate size measurement based on textual requirements using COSMIC and MicroM methods. We constructed one heterogeneous dataset and two industrial datasets, each manually measured by experienced analysts. Models were evaluated in three settings: (i) generic model evaluation, where the models are trained and tested on heterogeneous data, (ii) internal evaluation, where the models are trained and tested on organization-specific data, and (iii) external evaluation, where generic models were tested on organization-specific data. Results show that organization-specific models significantly outperform generic models, indicating that aligning training data with the target organization’s requirement style is critical for accuracy. SE-BERT, a domain-adapted variant of BERT, improves performance, particularly in low-resource settings. These findings highlight the practical potential of tailoring training data for broader adoption and cost-effective software size measurement in industrial contexts.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"231 ","pages":"Article 112638"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225003073","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective software size measurement is critical for accurate effort estimation, yet many organizations avoid it due to high costs, required expertise, and time-consuming manual effort. This often leads to vague predictions, poor planning, and project overruns. To address this challenge, we investigate the use of pre-trained language models — BERT and SE-BERT — to automate size measurement based on textual requirements using COSMIC and MicroM methods. We constructed one heterogeneous dataset and two industrial datasets, each manually measured by experienced analysts. Models were evaluated in three settings: (i) generic model evaluation, where the models are trained and tested on heterogeneous data, (ii) internal evaluation, where the models are trained and tested on organization-specific data, and (iii) external evaluation, where generic models were tested on organization-specific data. Results show that organization-specific models significantly outperform generic models, indicating that aligning training data with the target organization’s requirement style is critical for accuracy. SE-BERT, a domain-adapted variant of BERT, improves performance, particularly in low-resource settings. These findings highlight the practical potential of tailoring training data for broader adoption and cost-effective software size measurement in industrial contexts.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.