{"title":"A scalable composite Bayesian optimization framework for engineering design using deep learning reduced-order models","authors":"Abhijnan Dikshit, Leifur Leifsson","doi":"10.1016/j.jocs.2025.102722","DOIUrl":null,"url":null,"abstract":"<div><div>Composite Bayesian optimization (CBO) methods are attractive methods for black-box optimization problems. Though CBO methods offer significant benefits, extending CBO to high-dimensional input and output spaces has been less explored. The limited scalability and accuracy of multi-output Gaussian process (GP) models makes them less attractive for engineering design problems. Standard neural network-based models provide an alternative, but require the implementation of expensive and complex uncertainty quantification methods to enable CBO. As such, this paper develops Bayesian optimization using non-intrusive reduced-order models (ROMBO), a framework for high-dimensional CBO using deep learning reduced-order models. The framework utilizes autoencoders to create a nonlinear embedding of the output space that is modeled using a multi-task GP model. A Monte Carlo expected improvement acquisition function is used to balance exploration of the design space and exploitation of the composite objective function. The proposed framework is characterized using three synthetic problems and an inverse design problem for a transonic airfoil. It is compared with a standard BO implementation and a CBO implementation that generates an embedding of the outputs using proper orthogonal decomposition (POD). The results demonstrate that the ROMBO framework can achieve up to one to four orders of magnitude lower objective function values as compared to the other two methods. Additionally, ROMBO is more sample efficient than the other two methods, achieving far lower objective function values in fewer sampling iterations. This work demonstrates that ROMBO is a promising framework for enabling the use of CBO for complex high-dimensional design problems.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"92 ","pages":"Article 102722"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001991","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Composite Bayesian optimization (CBO) methods are attractive methods for black-box optimization problems. Though CBO methods offer significant benefits, extending CBO to high-dimensional input and output spaces has been less explored. The limited scalability and accuracy of multi-output Gaussian process (GP) models makes them less attractive for engineering design problems. Standard neural network-based models provide an alternative, but require the implementation of expensive and complex uncertainty quantification methods to enable CBO. As such, this paper develops Bayesian optimization using non-intrusive reduced-order models (ROMBO), a framework for high-dimensional CBO using deep learning reduced-order models. The framework utilizes autoencoders to create a nonlinear embedding of the output space that is modeled using a multi-task GP model. A Monte Carlo expected improvement acquisition function is used to balance exploration of the design space and exploitation of the composite objective function. The proposed framework is characterized using three synthetic problems and an inverse design problem for a transonic airfoil. It is compared with a standard BO implementation and a CBO implementation that generates an embedding of the outputs using proper orthogonal decomposition (POD). The results demonstrate that the ROMBO framework can achieve up to one to four orders of magnitude lower objective function values as compared to the other two methods. Additionally, ROMBO is more sample efficient than the other two methods, achieving far lower objective function values in fewer sampling iterations. This work demonstrates that ROMBO is a promising framework for enabling the use of CBO for complex high-dimensional design problems.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).