Social media discussions on educators: Selecting and appraisal of recent research using TF-IDF

IF 5.7 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mateo R. Borbon Jr. , Ryan A. Ebardo
{"title":"Social media discussions on educators: Selecting and appraisal of recent research using TF-IDF","authors":"Mateo R. Borbon Jr. ,&nbsp;Ryan A. Ebardo","doi":"10.1016/j.caeo.2025.100293","DOIUrl":null,"url":null,"abstract":"<div><div>This systematic literature review, analyzing 36 peer-reviewed publications from 2019 to February of 2025, addresses a critical gap by examining the use of social media analytics (SMA) for faculty evaluation. Employing a novel methodological approach that combines machine learning-assisted screening (ASReview) with TF-IDF, the study finds that platforms like Twitter and Facebook are increasingly analyzed using sentiment analysis, machine learning, and text mining. These techniques provide real-time, unfiltered student feedback on teaching effectiveness, complementing traditional evaluation instruments and helping to monitor institutional reputation. While SMA offers valuable insights, the review highlights significant challenges, including data quality and credibility, algorithmic bias, ethical concerns, and generalizability. Effectively leveraging SMA's potential requires addressing these issues through robust theoretical frameworks, balanced institutional policies, and enhanced digital literacy to improve teaching practices while safeguarding academic integrity.</div></div>","PeriodicalId":100322,"journal":{"name":"Computers and Education Open","volume":"9 ","pages":"Article 100293"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666557325000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic literature review, analyzing 36 peer-reviewed publications from 2019 to February of 2025, addresses a critical gap by examining the use of social media analytics (SMA) for faculty evaluation. Employing a novel methodological approach that combines machine learning-assisted screening (ASReview) with TF-IDF, the study finds that platforms like Twitter and Facebook are increasingly analyzed using sentiment analysis, machine learning, and text mining. These techniques provide real-time, unfiltered student feedback on teaching effectiveness, complementing traditional evaluation instruments and helping to monitor institutional reputation. While SMA offers valuable insights, the review highlights significant challenges, including data quality and credibility, algorithmic bias, ethical concerns, and generalizability. Effectively leveraging SMA's potential requires addressing these issues through robust theoretical frameworks, balanced institutional policies, and enhanced digital literacy to improve teaching practices while safeguarding academic integrity.
社会媒体对教育者的讨论:使用TF-IDF选择和评价最近的研究
这篇系统的文献综述分析了2019年至2025年2月的36篇同行评审的出版物,通过研究社交媒体分析(SMA)在教师评估中的使用,解决了一个关键的差距。该研究采用了一种将机器学习辅助筛选(ASReview)与TF-IDF相结合的新方法,发现Twitter和Facebook等平台越来越多地使用情感分析、机器学习和文本挖掘进行分析。这些技术提供了实时的、未经过滤的学生对教学效果的反馈,补充了传统的评估工具,并有助于监测机构的声誉。虽然SMA提供了有价值的见解,但该综述强调了重大挑战,包括数据质量和可信度、算法偏见、伦理问题和可泛化性。有效利用SMA的潜力需要通过健全的理论框架、平衡的制度政策和增强数字素养来解决这些问题,以改善教学实践,同时维护学术诚信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信